Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 126 - 150 of 345 results
Review
126.

Light control of RTK activity: from technology development to translational research.

blue cyan green red Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Chem Sci, 7 Sep 2020 DOI: 10.1039/d0sc03570j Link to full text
Abstract: Inhibition of receptor tyrosine kinases (RTKs) by small molecule inhibitors and monoclonal antibodies is used to treat cancer. Conversely, activation of RTKs with their ligands, including growth factors and insulin, is used to treat diabetes and neurodegeneration. However, conventional therapies that rely on injection of RTK inhibitors or activators do not provide spatiotemporal control over RTK signaling, which results in diminished efficiency and side effects. Recently, a number of optogenetic and optochemical approaches have been developed that allow RTK inhibition or activation in cells and in vivo with light. Light irradiation can control RTK signaling non-invasively, in a dosed manner, with high spatio-temporal precision, and without the side effects of conventional treatments. Here we provide an update on the current state of the art of optogenetic and optochemical RTK technologies and the prospects of their use in translational studies and therapy.
127.

Engineering Photosensory Modules of Non-Opsin-Based Optogenetic Actuators.

blue cyan near-infrared red violet Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Int J Mol Sci, 7 Sep 2020 DOI: 10.3390/ijms21186522 Link to full text
Abstract: Optogenetic (photo-responsive) actuators engineered from photoreceptors are widely used in various applications to study cell biology and tissue physiology. In the toolkit of optogenetic actuators, the key building blocks are genetically encodable light-sensitive proteins. Currently, most optogenetic photosensory modules are engineered from naturally-occurring photoreceptor proteins from bacteria, fungi, and plants. There is a growing demand for novel photosensory domains with improved optical properties and light-induced responses to satisfy the needs of a wider variety of studies in biological sciences. In this review, we focus on progress towards engineering of non-opsin-based photosensory domains, and their representative applications in cell biology and physiology. We summarize current knowledge of engineering of light-sensitive proteins including light-oxygen-voltage-sensing domain (LOV), cryptochrome (CRY2), phytochrome (PhyB and BphP), and fluorescent protein (FP)-based photosensitive domains (Dronpa and PhoCl).
128.

Controlling gene expression with light: a multidisciplinary endeavour.

blue green near-infrared red Cryptochromes Cyanobacteriochromes LOV domains Phytochromes Review
Biochem Soc Trans, 28 Aug 2020 DOI: 10.1042/bst20200014 Link to full text
Abstract: The expression of a gene to a protein is one of the most vital biological processes. The use of light to control biology offers unparalleled spatiotemporal resolution from an external, orthogonal signal. A variety of methods have been developed that use light to control the steps of transcription and translation of specific genes into proteins, for cell-free to in vivo biotechnology applications. These methods employ techniques ranging from the modification of small molecules, nucleic acids and proteins with photocages, to the engineering of proteins involved in gene expression using naturally light-sensitive proteins. Although the majority of currently available technologies employ ultraviolet light, there has been a recent increase in the use of functionalities that work at longer wavelengths of light, to minimise cellular damage and increase tissue penetration. Here, we discuss the different chemical and biological methods employed to control gene expression, while also highlighting the central themes and the most exciting applications within this diverse field.
129.

Shared signaling pathways in Alzheimer's and metabolic disease may point to new treatment approaches.

blue Cryptochromes Review
FEBS J, 27 Aug 2020 DOI: 10.1111/febs.15540 Link to full text
Abstract: 'A peculiar severe disease process of the cerebral cortex' are the exact words used by A. Alzheimer in 1906 to describe a patient's increasingly severe condition of memory loss, changes in personality, and sleep disturbance. A century later, this 'peculiar' disease has become widely known as Alzheimer's disease (AD), the world's most common neurodegenerative disease, affecting more than 35 million people globally. At the same time, its pathology remains unclear and no successful treatment exists. Several theories for AD etiology have emerged throughout the past century. In this review, we focus on the metabolic mechanisms that are similar between AD and metabolic diseases, based on the results from genome-wide association studies. We discuss signaling pathways involved in both types of disease and look into new optogenetic methods to study the in vivo mechanisms of AD.
130.

Lights up on organelles: Optogenetic tools to control subcellular structure and organization.

blue cyan near-infrared red UV BLUF domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Wiley Interdiscip Rev Syst Biol Med, 26 Jul 2020 DOI: 10.1002/wsbm.1500 Link to full text
Abstract: Since the neurobiological inception of optogenetics, light-controlled molecular perturbations have been applied in many scientific disciplines to both manipulate and observe cellular function. Proteins exhibiting light-sensitive conformational changes provide researchers with avenues for spatiotemporal control over the cellular environment and serve as valuable alternatives to chemically inducible systems. Optogenetic approaches have been developed to target proteins to specific subcellular compartments, allowing for the manipulation of nuclear translocation and plasma membrane morphology. Additionally, these tools have been harnessed for molecular interrogation of organelle function, location, and dynamics. Optogenetic approaches offer novel ways to answer fundamental biological questions and to improve the efficiency of bioengineered cell factories by controlling the assembly of synthetic organelles. This review first provides a summary of available optogenetic systems with an emphasis on their organelle-specific utility. It then explores the strategies employed for organelle targeting and concludes by discussing our perspective on the future of optogenetics to control subcellular structure and organization. This article is categorized under: Laboratory Methods and Technologies > Genetic/Genomic Methods Physiology > Physiology of Model Organisms Biological Mechanisms > Regulatory Biology Models of Systems Properties and Processes > Cellular Models.
131.

Syntaxin Clustering and Optogenetic Control for Synaptic Membrane Fusion.

blue Cryptochromes LOV domains Review
J Mol Biol, 16 Jul 2020 DOI: 10.1016/j.jmb.2020.07.005 Link to full text
Abstract: Membrane fusion during synaptic transmission mediates the trafficking of chemical signals and neuronal communication. The fast kinetics of membrane fusion on the order of millisecond is precisely regulated by the assembly of SNAREs and accessory proteins. It is believed that the formation of the SNARE complex is a key step during membrane fusion. Little is known, however, about the molecular machinery that mediates the formation of a large pre-fusion complex, including multiple SNAREs and accessory proteins. Syntaxin, a transmembrane protein on the plasma membrane, has been observed to undergo oligomerization to form clusters. Whether this clustering plays a critical role in membrane fusion is poorly understood in live cells. Optogenetics is an emerging biotechnology armed with the capacity to precisely modulate protein-protein interaction in time and space. Here, we propose an experimental scheme that combines optogenetics with single-vesicle membrane fusion, aiming to gain a better understanding of the molecular mechanism by which the syntaxin cluster regulates membrane fusion. We envision that newly developed optogenetic tools could facilitate the mechanistic understanding of synaptic transmission in live cells and animals.
132.

Engineering Optogenetic Protein Analogs.

blue LOV domains Review
Methods Mol Biol, 11 Jul 2020 DOI: 10.1007/978-1-0716-0755-8_7 Link to full text
Abstract: This chapter provides an overview of the technologies we have developed to control proteins with light. First, we focus on the LOV domain, a versatile building block with reversible photo-response, kinetics tunable through mutagenesis, and ready expression in a broad range of cells and animals. Incorporation of LOV into proteins produced a variety of approaches: simple steric block of the active site released when irradiation lengthened a linker (PA-GTPases), reversible release from sequestration at mitochondria (LOVTRAP), and Z-lock, a method in which a light-cleavable bridge is placed where it occludes the active site. The latter two methods make use of Zdk, small engineered proteins that bind selectively to the dark state of LOV. In order to control endogenous proteins, inhibitory peptides are embedded in the LOV domain where they are exposed only upon irradiation (PKA and MLCK inhibition). Similarly, controlled exposure of a nuclear localization sequence and nuclear export sequence is used to reversibly send proteins into the nucleus. Another avenue of engineering makes use of the heterodimerization of FKBP and FRB proteins, induced by the small molecule rapamycin. We control rapamycin with light or simply add it to target cells. Incorporation of fused FKBP-FRB into kinases, guanine exchange factors, or GTPases leads to rapamycin-induced protein activation. Kinases are engineered so that they can interact with only a specific substrate upon activation. Recombination of split proteins using rapamycin-induced conformational changes minimizes spontaneous reassembly. Finally, we explore the insertion of LOV or rapamycin-responsive domains into proteins such that light-induced conformational changes exert allosteric control of the active site. We hope these design ideas will inspire new applications and broaden our reach towards dynamic biological processes that unfold when studied in vivo.
133.

Optogenetic Techniques for Manipulating and Sensing G Protein-Coupled Receptor Signaling.

blue cyan red UV BLUF domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Methods Mol Biol, 11 Jul 2020 DOI: 10.1007/978-1-0716-0755-8_2 Link to full text
Abstract: G protein-coupled receptors (GPCRs) form the largest class of membrane receptors in the mammalian genome with nearly 800 human genes encoding for unique subtypes. Accordingly, GPCR signaling is implicated in nearly all physiological processes. However, GPCRs have been difficult to study due in part to the complexity of their function which can lead to a plethora of converging or diverging downstream effects over different time and length scales. Classic techniques such as pharmacological control, genetic knockout and biochemical assays often lack the precision required to probe the functions of specific GPCR subtypes. Here we describe the rapidly growing set of optogenetic tools, ranging from methods for optical control of the receptor itself to optical sensing and manipulation of downstream effectors. These tools permit the quantitative measurements of GPCRs and their downstream signaling with high specificity and spatiotemporal precision.
134.

Optogenetics and CRISPR: A New Relationship Built to Last.

blue cyan red Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Methods Mol Biol, 11 Jul 2020 DOI: 10.1007/978-1-0716-0755-8_18 Link to full text
Abstract: Since the breakthrough discoveries that CRISPR-Cas9 nucleases can be easily programmed and employed to induce targeted double-strand breaks in mammalian cells, the gene editing field has grown exponentially. Today, CRISPR technologies based on engineered class II CRISPR effectors facilitate targeted modification of genes and RNA transcripts. Moreover, catalytically impaired CRISPR-Cas variants can be employed as programmable DNA binding domains and used to recruit effector proteins, such as transcriptional regulators, epigenetic modifiers or base-modifying enzymes, to selected genomic loci. The juxtaposition of CRISPR and optogenetics enables spatiotemporally confined and highly dynamic genome perturbations in living cells and animals and holds unprecedented potential for biology and biomedicine.Here, we provide an overview of the state-of-the-art methods for light-control of CRISPR effectors. We will detail the plethora of exciting applications enabled by these systems, including spatially confined genome editing, timed activation of endogenous genes, as well as remote control of chromatin-chromatin interactions. Finally, we will discuss limitations of current optogenetic CRISPR tools and point out routes for future innovation in this emerging field.
135.

SynBio and the Boundaries between Functional and Pathogenic RepA-WH1 Bacterial Amyloids.

blue LOV domains Review
mSystems, 30 Jun 2020 DOI: 10.1128/msystems.00553-20 Link to full text
Abstract: Amyloids are protein polymers that were initially linked to human diseases. Across the whole Tree of Life, many disease-unrelated proteins are now emerging for which amyloids represent distinct functional states. Most bacterial amyloids described are extracellular, contributing to biofilm formation. However, only a few have been found in the bacterial cytosol. This paper reviews from the perspective of synthetic biology (SynBio) our understanding of the subtle line that separates functional from pathogenic and transmissible amyloids (prions). In particular, it is focused on RepA-WH1, a functional albeit unconventional natural amyloidogenic protein domain that participates in controlling DNA replication of bacterial plasmids. SynBio approaches, including protein engineering and the design of allosteric effectors such as diverse ligands and an optogenetic module, have enabled the generation in RepA-WH1 of an intracellular cytotoxic prion-like agent in bacteria. The synthetic RepA-WH1 prion has the potential to develop into novel antimicrobials.
136.

Genetically-encoded biosensors for analyzing and controlling cellular process in yeast.

blue BLUF domains Cryptochromes Review
Curr Opin Biotechnol, 18 Jun 2020 DOI: 10.1016/j.copbio.2020.04.006 Link to full text
Abstract: Yeast has been a robust platform to manufacture a broad range of biofuels, commodity chemicals, natural products and pharmaceuticals. The membrane-bound organelles in yeast provide us the means to access the specialized metabolism for various biosynthetic applications. The separation and compartmentalization of genetic and metabolic events presents us the opportunity to precisely control and program gene expression for higher order biological functions. To further advance yeast synthetic biology platform, genetically encoded biosensors and actuators haven been engineered for in vivo monitoring and controlling cellular processes with spatiotemporal resolutions. The dynamic response, sensitivity and operational range of these genetically encoded sensors are determined by the regulatory architecture, dynamic assemly and interactions of the related proteins and genetic elements. This review provides an update of the basic design principles underlying the allosteric transcription factors, GPCR and optogenetics-based sensors, aiming to precisely analyze and control yeast cellular processes for various biotechnological applications.
137.

Non-neuromodulatory Optogenetic Tools in Zebrafish.

blue cyan green red BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Front Cell Dev Biol, 3 Jun 2020 DOI: 10.3389/fcell.2020.00418 Link to full text
Abstract: The zebrafish (Danio rerio) is a popular vertebrate model organism to investigate molecular mechanisms driving development and disease. Due to its transparency at embryonic and larval stages, investigations in the living organism are possible with subcellular resolution using intravital microscopy. The beneficial optical characteristics of zebrafish not only allow for passive observation, but also active manipulation of proteins and cells by light using optogenetic tools. Initially, photosensitive ion channels have been applied for neurobiological studies in zebrafish to dissect complex behaviors on a cellular level. More recently, exciting non-neural optogenetic tools have been established to control gene expression or protein localization and activity, allowing for unprecedented non-invasive and precise manipulation of various aspects of cellular physiology. Zebrafish will likely be a vertebrate model organism at the forefront of in vivo application of non-neural optogenetic tools and pioneering work has already been performed. In this review, we provide an overview of non-neuromodulatory optogenetic tools successfully applied in zebrafish to control gene expression, protein localization, cell signaling, migration and cell ablation.
138.

Flux controlling technology for central carbon metabolism for efficient microbial bio-production.

blue green Cyanobacteriochromes LOV domains Review
Curr Opin Biotechnol, 30 May 2020 DOI: 10.1016/j.copbio.2020.04.003 Link to full text
Abstract: Syntheses of many commodities that are produced using microorganisms require cofactors such as ATP and NAD(P)H. Thus, optimization of the flux distribution in central carbon metabolism, which plays a key role in cofactor regeneration, is critical for enhancing the production of the target compounds. Since the intracellular and extracellular conditions change over time in the fermentation process, dynamic control of the metabolic system for maintaining the cellular state appropriately is necessary. Here, we review techniques for detecting the intracellular metabolic state with fluorescent sensors and controlling the flux of central carbon metabolism with optogenetic tools, as well as present a prospect of bio-production processes for fine-tuning the flux distribution.
139.

Color Sensing and Signal Transmission Diversity of Cyanobacterial Phytochromes and Cyanobacteriochromes.

green red Cyanobacteriochromes Phytochromes Review
Mol Cells, 22 May 2020 DOI: 10.14348/molcells.2020.0077 Link to full text
Abstract: To perceive fluctuations in light quality, quantity, and timing, higher plants have evolved diverse photoreceptors including UVR8 (a UV-B photoreceptor), cryptochromes, phototropins, and phytochromes (Phys). In contrast to plants, prokaryotic oxygen-evolving photosynthetic organisms, cyanobacteria, rely mostly on bilin-based photoreceptors, namely, cyanobacterial phytochromes (Cphs) and cyanobacteriochromes (CBCRs), which exhibit structural and functional differences compared with plant Phys. CBCRs comprise varying numbers of light sensing domains with diverse color-tuning mechanisms and signal transmission pathways, allowing cyanobacteria to respond to UV-A, visible, and far-red lights. Recent genomic surveys of filamentous cyanobacteria revealed novel CBCRs with broader chromophore-binding specificity and photocycle protochromicity. Furthermore, a novel Cph lineage has been identified that absorbs blue-violet/yellow-orange light. In this minireview, we briefly discuss the diversity in color sensing and signal transmission mechanisms of Cphs and CBCRs, along with their potential utility in the field of optogenetics.
140.

Using optogenetics to tackle systems-level questions of multicellular morphogenesis.

blue red Cryptochromes LOV domains Phytochromes Review
Curr Opin Cell Biol, 11 May 2020 DOI: 10.1016/j.ceb.2020.04.004 Link to full text
Abstract: Morphogenesis of multicellular systems is governed by precise spatiotemporal regulation of biochemical reactions and mechanical forces which together with environmental conditions determine the development of complex organisms. Current efforts in the field aim at decoding the system-level principles underlying the regulation of developmental processes. Toward this goal, optogenetics, the science of regulation of protein function with light, is emerging as a powerful new tool to quantitatively perturb protein function in vivo with unprecedented precision in space and time. In this review, we provide an overview of how optogenetics is helping to address system-level questions of multicellular morphogenesis and discuss future directions.
141.

A STIMulating journey into optogenetic engineering.

blue Cryptochromes LOV domains Review
Cell Calcium, 4 May 2020 DOI: 10.1016/j.ceca.2020.102197 Link to full text
Abstract: Genetically-encoded calcium actuators (GECAs) stemmed from STIM1 have enabled optical activation of endogenous ORAI1 channels in both excitable and non-excitable tissues. These GECAs offer new non-invasive means to probe the structure-function relations of calcium channels and wirelessly control the behavior of awake mice.
142.

Lights, cytoskeleton, action: Optogenetic control of cell dynamics.

blue cyan red Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Curr Opin Cell Biol, 1 May 2020 DOI: 10.1016/j.ceb.2020.03.003 Link to full text
Abstract: Cell biology is moving from observing molecules to controlling them in real time, a critical step towards a mechanistic understanding of how cells work. Initially developed from light-gated ion channels to control neuron activity, optogenetics now describes any genetically encoded protein system designed to accomplish specific light-mediated tasks. Recent photosensitive switches use many ingenious designs that bring spatial and temporal control within reach for almost any protein or pathway of interest. This next generation optogenetics includes light-controlled protein-protein interactions and shape-shifting photosensors, which in combination with live microscopy enable acute modulation and analysis of dynamic protein functions in living cells. We provide a brief overview of various types of optogenetic switches. We then discuss how diverse approaches have been used to control cytoskeleton dynamics with light through Rho GTPase signaling, microtubule and actin assembly, mitotic spindle positioning and intracellular transport and highlight advantages and limitations of different experimental strategies.
143.

Controlling mRNA localization with light.

blue Cryptochromes Review
Nat Methods, Apr 2020 DOI: 10.1038/s41592-020-0804-1 Link to full text
Abstract: Abstract not available.
144.

A series of commentaries for a symposium entitled "Session 3SDA - Optogenetics: applying photoreceptor for understanding biological phenomena".

blue Cryptochromes Review
Biophys Rev, 12 Mar 2020 DOI: 10.1007/s12551-020-00674-9 Link to full text
Abstract: In this symposium, six speakers introduced the cutting-edge technologies and researches in optogenetics (Fig. 1). Optogenetics markedly revolutionized life science. This technique allows fast and precise control of a defined biological event, such as neuronal excitation, cell locomotion, gene expression, and so on, even in a complex system such as freely moving animals. Optogenetics has been realized through understanding the molecular properties of photoreceptors, developing new optical techniques, genetics in model systems, and modern brain science.
145.

Optogenetic control of single mRNA spatiotemporal dynamics.

blue Cryptochromes Review
Nat Rev Genet, 19 Feb 2020 DOI: 10.1038/s41576-020-0219-y Link to full text
Abstract: Abstract not available.
146.

Recent advances in the use of genetically encodable optical tools to elicit and monitor signaling events.

blue cyan red UV violet BLUF domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Curr Opin Cell Biol, 10 Feb 2020 DOI: 10.1016/j.ceb.2020.01.007 Link to full text
Abstract: Cells rely on a complex network of spatiotemporally regulated signaling activities to effectively transduce information from extracellular cues to intracellular machinery. To probe this activity architecture, researchers have developed an extensive molecular tool kit of fluorescent biosensors and optogenetic actuators capable of monitoring and manipulating various signaling activities with high spatiotemporal precision. The goal of this review is to provide readers with an overview of basic concepts and recent advances in the development and application of genetically encodable biosensors and optogenetic tools for understanding signaling activity.
147.

Intracellular signaling dynamics and their role in coordinating tissue repair.

blue red Cryptochromes LOV domains Phytochromes Review
Wiley Interdiscip Rev Syst Biol Med, 8 Feb 2020 DOI: 10.1002/wsbm.1479 Link to full text
Abstract: Tissue repair is a complex process that requires effective communication and coordination between cells across multiple tissues and organ systems. Two of the initial intracellular signals that encode injury signals and initiate tissue repair responses are calcium and extracellular signal-regulated kinase (ERK). However, calcium and ERK signaling control a variety of cellular behaviors important for injury repair including cellular motility, contractility, and proliferation, as well as the activity of several different transcription factors, making it challenging to relate specific injury signals to their respective repair programs. This knowledge gap ultimately hinders the development of new wound healing therapies that could take advantage of native cellular signaling programs to more effectively repair tissue damage. The objective of this review is to highlight the roles of calcium and ERK signaling dynamics as mechanisms that link specific injury signals to specific cellular repair programs during epithelial and stromal injury repair. We detail how the signaling networks controlling calcium and ERK can now also be dissected using classical signal processing techniques with the advent of new biosensors and optogenetic signal controllers. Finally, we advocate the importance of recognizing calcium and ERK dynamics as key links between injury detection and injury repair programs that both organize and execute a coordinated tissue repair response between cells across different tissues and organs. This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Biological Mechanisms > Cell Signaling Laboratory Methods and Technologies > Imaging Models of Systems Properties and Processes > Organ, Tissue, and Physiological Models.
148.

Role of cyclic nucleotides and their downstream signaling cascades in memory function: being at the right time at the right spot.

blue red BLUF domains LOV domains Phytochromes Review
Neurosci Biobehav Rev, 7 Feb 2020 DOI: 10.1016/j.neubiorev.2020.02.004 Link to full text
Abstract: A plethora of studies indicate the important role of cAMP and cGMP cascades in neuronal plasticity and memory function. As a result, altered cyclic nucleotide signaling has been implicated in the pathophysiology of mnemonic dysfunction encountered in several diseases. In the present review we provide a wide overview of studies regarding the involvement of cyclic nucleotides, as well as their upstream and downstream molecules, in physiological and pathological mnemonic processes. Next, we discuss the regulation of the intracellular concentration of cyclic nucleotides via phosphodiesterases, the enzymes that degrade cAMP and/or cGMP, and via A-kinase-anchoring proteins that refine signal compartmentalization of cAMP signaling. We also provide an overview of the available data pointing to the existence of specific time windows in cyclic nucleotide signaling during neuroplasticity and memory formation and the significance to target these specific time phases for improving memory formation. Finally, we highlight the importance of emerging imaging tools like Förster resonance energy transfer imaging and optogenetics in detecting, measuring and manipulating the action of cyclic nucleotide signaling cascades.
149.

Chemical and Light Inducible Epigenome Editing.

blue Cryptochromes LOV domains Review
Int J Mol Sci, 3 Feb 2020 DOI: 10.3390/ijms21030998 Link to full text
Abstract: The epigenome defines the unique gene expression patterns and resulting cellular behaviors in different cell types. Epigenome dysregulation has been directly linked to various human diseases. Epigenome editing enabling genome locus-specific targeting of epigenome modifiers to directly alter specific local epigenome modifications offers a revolutionary tool for mechanistic studies in epigenome regulation as well as the development of novel epigenome therapies. Inducible and reversible epigenome editing provides unique temporal control critical for understanding the dynamics and kinetics of epigenome regulation. This review summarizes the progress in the development of spatiotemporal-specific tools using small molecules or light as inducers to achieve the conditional control of epigenome editing and their applications in epigenetic research.
150.

A Nudge or a Shove: Altering Actomyosin Pulse Profiles In Vivo.

blue LOV domains Review
Dev Cell, 27 Jan 2020 DOI: 10.1016/j.devcel.2020.01.001 Link to full text
Abstract: Pulsed actomyosin contractions drive morphogenetic processes, but how cyclic frequencies and amplitudes of contractions are tuned to achieve processive shrinking of cell surfaces remains unclear. In this issue of Developmental Cell, Cavanaugh et al. (2020) use optogenetics and biophysical modeling to demonstrate how cells respond to different oscillatory force profiles.
Submit a new publication to our database