Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 151 - 171 of 171 results
Background
151.

Estimation of the available free energy in a LOV2-J alpha photoswitch.

blue LOV domains Background
Nat Chem Biol, 6 Jul 2008 DOI: 10.1038/nchembio.99 Link to full text
Abstract: Protein photosensors are versatile tools for studying ligand-regulated allostery and signaling. Fundamental to these processes is the amount of energy that can be provided by a photosensor to control downstream signaling events. Such regulation is exemplified by the phototropins--plant serine/threonine kinases that are activated by blue light via conserved LOV (light, oxygen and voltage) domains. The core photosensor of oat phototropin 1 is a LOV domain that interacts in a light-dependent fashion with an adjacent alpha-helix (J alpha) to control kinase activity. We used solution NMR measurements to quantify the free energy of the LOV domain-J alpha-helix binding equilibrium in the dark and lit states. These data indicate that light shifts this equilibrium by approximately 3.8 kcal mol(-1), thus quantifying the energy available through LOV-J alpha for light-driven allosteric regulation. This study provides insight into the energetics of light sensing by phototropins and benchmark values for engineering photoswitchable systems based on the LOV-J alpha interaction.
152.

Light activation of the LOV protein vivid generates a rapidly exchanging dimer.

blue LOV domains Background
Biochemistry, 14 Jun 2008 DOI: 10.1021/bi8007017 Link to full text
Abstract: The fungal photoreceptor Vivid (VVD) plays an important role in the adaptation of blue-light responses in Neurospora crassa. VVD, an FAD-binding LOV (light, oxygen, voltage) protein, couples light-induced cysteinyl adduct formation at the flavin ring to conformational changes in the N-terminal cap (Ncap) of the VVD PAS domain. Size-exclusion chromatography (SEC), equilibrium ultracentrifugation, and static and dynamic light scattering show that these conformational changes generate a rapidly exchanging VVD dimer, with an expanded hydrodynamic radius. A three-residue N-terminal beta-turn that assumes two different conformations in a crystal structure of a VVD C71V variant is essential for light-state dimerization. Residue substitutions at a critical hinge between the Ncap and PAS core can inhibit or enhance dimerization, whereas a Tyr to Trp substitution at the Ncap-PAS interface stabilizes the light-state dimer. Cross-linking through engineered disulfides indicates that the light-state dimer differs considerably from the dark-state dimer found in VVD crystal structures. These results verify the role of Ncap conformational changes in gating the photic response of N. crassa and indicate that LOV-LOV homo- or heterodimerization may be a mechanism for regulating light-activated gene expression.
153.

Photoregulation in prokaryotes.

blue near-infrared red Fluorescent proteins LOV domains Phytochromes Review Background
Curr Opin Microbiol, 8 Apr 2008 DOI: 10.1016/j.mib.2008.02.014 Link to full text
Abstract: The spectroscopic identification of sensory rhodopsin I by Bogomolni and Spudich in 1982 provided a molecular link between the light environment and phototaxis in Halobacterium salinarum, and thus laid the foundation for the study of signal transducing photosensors in prokaryotes. In recent years, a number of new prokaryotic photosensory receptors have been discovered across a broad range of taxa, including dozens in chemotrophic species. Among these photoreceptors are new classes of rhodopsins, BLUF-domain proteins, bacteriophytochromes, cryptochromes, and LOV-family photosensors. Genetic and biochemical analyses of these receptors have demonstrated that they can regulate processes ranging from photosynthetic pigment biosynthesis to virulence.
154.

N- and C-terminal flanking regions modulate light-induced signal transduction in the LOV2 domain of the blue light sensor phototropin 1 from Avena sativa.

blue LOV domains Background
Biochemistry, 15 Nov 2007 DOI: 10.1021/bi701543e Link to full text
Abstract: Light sensing by photoreceptors controls phototropism, chloroplast movement, stomatal opening, and leaf expansion in plants. Understanding the molecular mechanism by which these processes are regulated requires a quantitative description of photoreceptor dynamics. We focus on a light-driven signal transduction mechanism in the LOV2 domain (LOV, light, oxygen, voltage) of the blue light photoreceptor phototropin 1 from Avena sativa (oat). High-resolution crystal structures of the dark and light states of an oat LOV2 construct including residues Leu404 through Leu546 (LOV2 (404-546)) have been determined at 105 and 293 K. In all four structures, LOV2 (404-546) exhibits the typical Per-ARNT-Sim (PAS) fold, flanked by an additional conserved N-terminal turn-helix-turn motif and a C-terminal flanking region containing an amphipathic Jalpha helix. These regions dock on the LOV2 core domain and bury several hydrophobic residues of the central beta-sheet of the core domain that would otherwise be exposed to solvent. Light structures of LOV2 (404-546) reveal that formation of the covalent bond between Cys450 and the C4a atom of the flavin mononucleotide (FMN) results in local rearrangement of the hydrogen-bonding network in the FMN binding pocket. These rearrangements are associated with disruption of the Asn414-Asp515 hydrogen bond on the surface of the protein and displacement of the N- and C-terminal flanking regions of LOV2 (404-546), both of which constitute a structural signal.
155.

Dual role for a bacteriophytochrome in the bioenergetic control of Rhodopseudomonas palustris: enhancement of photosystem synthesis and limitation of respiration.

near-infrared Phytochromes Background
Biochim Biophys Acta, 26 Sep 2007 DOI: 10.1016/j.bbabio.2007.09.003 Link to full text
Abstract: In the purple photosynthetic bacterium Rhodopseudomonas palustris, far-red illumination induces photosystem synthesis via the action of the bacteriophytochrome RpBphP1. This bacteriophytochrome antagonizes the repressive effect of the transcriptional regulator PpsR2 under aerobic condition. We show here that, in addition to photosystem synthesis, far-red light induces a significant growth rate limitation, compared to cells grown in the dark, linked to a decrease in the respiratory activity. The phenotypes of mutants inactivated in RpBphP1 and PpsR2 show their involvement in this regulation. Based on enzymatic and transcriptional studies, a 30% decrease in the expression of the alpha-ketoglutarate dehydrogenase complex, a central enzyme of the Krebs cycle, is observed under far-red light. We propose that this decrease is responsible for the down-regulation of respiration in this condition. This regulation mechanism at the Krebs cycle level still allows the formation of the photosynthetic apparatus via the synthesis of key biosynthesis precursors but lowers the production of NADH, i.e. the respiratory activity. Overall, the dual action of RpBphP1 on the regulation of both the photosynthesis genes and the Krebs cycle allows a fine adaptation of bacteria to environmental conditions by enhancement of the most favorable bioenergetic process in the light, photosynthesis versus respiration.
156.

Structural basis for light-dependent signaling in the dimeric LOV domain of the photosensor YtvA.

blue LOV domains Background
J Mol Biol, 2 Aug 2007 DOI: 10.1016/j.jmb.2007.07.039 Link to full text
Abstract: The photosensor YtvA binds flavin mononucleotide and regulates the general stress reaction in Bacillus subtilis in response to blue light illumination. It belongs to the family of light-oxygen-voltage (LOV) proteins that were first described in plant phototropins and form a subgroup of the Per-Arnt-Sim (PAS) superfamily. Here, we report the three-dimensional structure of the LOV domain of YtvA in its dark and light states. The protein assumes the global fold common to all PAS domains and dimerizes via a hydrophobic interface. Directly C-terminal to the core of the LOV domain, an alpha-helix extends into the solvent. Light absorption causes formation of a covalent bond between a conserved cysteine residue and atom C(4a) of the FMN ring, which triggers rearrangements throughout the LOV domain. Concomitantly, in the dark and light structures, the two subunits of the dimeric protein rotate relative to each other by 5 degrees . This small quaternary structural change is presumably a component of the mechanism by which the activity of YtvA is regulated in response to light. In terms of both structure and signaling mechanism, YtvA differs from plant phototropins and more closely resembles prokaryotic heme-binding PAS domains.
157.

Steric interactions stabilize the signaling state of the LOV2 domain of phototropin 1.

blue LOV domains Background
Biochemistry, 21 Jul 2007 DOI: 10.1021/bi700852w Link to full text
Abstract: Phototropins (phot1 and phot2) are blue light receptor kinases that control a range of photoresponses that serve to optimize the photosynthetic efficiency of plants. Light sensing by the phototropins is mediated by a repeated motif at the N-terminal region of the protein known as the LOV domain. Bacterially expressed LOV domains bind flavin mononucleotide noncovalently and are photochemically active in solution. Irradiation of the LOV domain results in the formation of a flavin-cysteinyl adduct (LOV390) which thermally relaxes back to the ground state in the dark, effectively completing a photocycle that serves as a molecular switch to control receptor kinase activity. We have employed a random mutagenesis approach to identify further amino acid residues involved in LOV-domain photochemistry. Escherichia coli colonies expressing a mutagenized population of LOV2 derived from Avena sativa (oat) phot1 were screened for variants that showed altered photochemical reactivity in response to blue light excitation. One variant showed slower rates of LOV390 formation but exhibited adduct decay times 1 order of magnitude faster than wild type. A single Ile --> Val substitution was responsible for the effects observed, which removes a single methyl group found in van der Waals contact with the cysteine sulfur involved in adduct formation. A kinetic acceleration trend was observed for adduct decay by decreasing the size of the isoleucine side chain. Our findings therefore indicate that the steric nature of this amino acid side chain contributes to stabilization of the C-S cysteinyl adduct.
158.

Conformational switching in the fungal light sensor Vivid.

blue LOV domains Background
Science, 18 May 2007 DOI: 10.1126/science.1137128 Link to full text
Abstract: The Neurospora crassa photoreceptor Vivid tunes blue-light responses and modulates gating of the circadian clock. Crystal structures of dark-state and light-state Vivid reveal a light, oxygen, or voltage Per-Arnt-Sim domain with an unusual N-terminal cap region and a loop insertion that accommodates the flavin cofactor. Photoinduced formation of a cystein-flavin adduct drives flavin protonation to induce an N-terminal conformational change. A cysteine-to-serine substitution remote from the flavin adenine dinucleotide binding site decouples conformational switching from the flavin photocycle and prevents Vivid from sending signals in Neurospora. Key elements of this activation mechanism are conserved by other photosensors such as White Collar-1, ZEITLUPE, ENVOY, and flavin-binding, kelch repeat, F-BOX 1 (FKF1).
159.

A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome.

blue Cryptochromes Background
J Biol Chem, 12 Feb 2007 DOI: 10.1074/jbc.m608872200 Link to full text
Abstract: Cryptochromes are flavoproteins that are evolutionary related to the DNA photolyases but lack DNA repair activity. Drosophila cryptochrome (dCRY) is a blue light photoreceptor that is involved in the synchronization of the circadian clock with the environmental light-dark cycle. Until now, spectroscopic and structural studies on this and other animal cryptochromes have largely been hampered by difficulties in their recombinant expression. We have therefore established an expression and purification scheme that enables us to purify mg amounts of monomeric dCRY from Sf21 insect cell cultures. Using UV-visible spectroscopy, mass spectrometry, and reversed phase high pressure liquid chromatography, we show that insect cell-purified dCRY contains flavin adenine dinucleotide in its oxidized state (FAD(ox)) and residual amounts of methenyltetrahydrofolate. Upon blue light irradiation, dCRY undergoes a reversible absorption change, which is assigned to the conversion of FAD(ox) to the red anionic FAD(.) radical. Our findings lead us to propose a novel photoreaction mechanism for dCRY, in which FAD(ox) corresponds to the ground state, whereas the FAD(.) radical represents the light-activated state that mediates resetting of the Drosophila circadian clock.
160.

Structure and photoreaction of photoactive yellow protein, a structural prototype of the PAS domain superfamily.

blue Fluorescent proteins Background
Photochem Photobiol, 1 Jan 2007 DOI: 10.1562/2006-02-28-ir-827 Link to full text
Abstract: Photoactive yellow protein (PYP) is a water-soluble photosensor protein found in purple photosynthetic bacteria. Unlike bacterial rhodopsins, photosensor proteins composed of seven transmembrane helices and a retinal chromophore in halophilic archaebacteria, PYP is a highly soluble globular protein. The alpha/beta fold structure of PYP is a structural prototype of the PAS domain superfamily, many members of which function as sensors for various kinds of stimuli. To absorb a photon in the visible region, PYP has a p-coumaric acid chromophore binding to the cysteine residue via a thioester bond. It exists in a deprotonated trans form in the dark. The primary photochemical event is photo-isomerization of the chromophore from trans to cis form. The twisted cis chromophore in early intermediates is relaxed and finally protonated. Consequently, the chromophore becomes electrostatically neutral and rearrangement of the hydrogen-bonding network triggers overall structural change of the protein moiety, in which local conformational change around the chromophore is propagated to the N-terminal region. Thus, it is an ideal model for protein conformational changes that result in functional change, responding to stimuli and expressing physiological activity. In this paper, recent progress in investigation of the photoresponse of PYP is reviewed.
161.

An unorthodox bacteriophytochrome from Rhodobacter sphaeroides involved in turnover of the second messenger c-di-GMP.

red Phytochromes Background
J Biol Chem, 12 Sep 2006 DOI: 10.1074/jbc.m604819200 Link to full text
Abstract: Bacteriophytochromes are bacterial photoreceptors that sense red/far red light using the biliverdin chromophore. Most bacteriophytochromes work as photoactivated protein kinases. The Rhodobacter sphaeroides bacteriophytochrome BphG1 is unconventional in that it has GGDEF and EAL output domains, which are involved, respectively, in synthesis (diguanylate cyclase) and degradation (phosphodiesterase) of the bacterial second messenger c-di-GMP. The GGDEF-EAL proteins studied to date displayed either diguanylate cyclase or phosphodiesterase activity but not both. To elucidate the function of BphG1, the holoprotein was purified from an Escherichia coli overexpression system designed to produce biliverdin. The holoprotein contained covalently bound biliverdin and interconverted between the red (dark) and far red (light-activated) forms. BphG1 had c-di-GMP-specific phosphodiesterase activity. Unexpectedly for a photochromic protein, this activity was essentially light-independent. BphG1 expressed in E. coli was found to undergo partial cleavage into two species. The smaller species was identified as the EAL domain of BphG1. It possessed c-di-GMP phosphodiesterase activity. Surprisingly, the larger species lacking EAL possessed diguanylate cyclase activity, which was dependent on biliverdin and strongly activated by light. BphG1 therefore is the first phytochrome with a non-kinase photoactivated enzymatic activity. This shows that the photosensory modules of phytochromes can transmit light signals to various outputs. BphG1 is potentially the first "bifunctional" enzyme capable of both c-di-GMP synthesis and hydrolysis. A model for the regulation of the "opposite" activities of BphG1 is presented.
162.

Blue light activates the sigmaB-dependent stress response of Bacillus subtilis via YtvA.

blue LOV domains Background
J Bacteriol, Sep 2006 DOI: 10.1128/jb.00716-06 Link to full text
Abstract: Here we present evidence for a physiologically relevant light response mediated by the LOV domain-containing protein YtvA in the soil bacterium Bacillus subtilis. The loss and overproduction of YtvA abolish and enhance, respectively, the increase in sigma(B)-controlled ctc promoter activity at moderate light intensities. These effects were absent in the dark and in red light but present under blue-light illumination. Thus, activation of the general stress response in B. subtilis is modulated by blue light.
163.

Kinetic analysis of the activation of photoactivated adenylyl cyclase (PAC), a blue-light receptor for photomovements of Euglena.

blue BLUF domains Background
Photochem Photobiol Sci, 15 Mar 2005 DOI: 10.1039/b417212d Link to full text
Abstract: Photoactivated adenylyl cyclase (PAC) was first purified from a photosensing organelle (the paraflagellar body) of the unicellular flagellate Euglena gracilis, and is regarded as the photoreceptor for the step-up photophobic response. Here, we report the kinetic properties of photoactivation of PAC and a change in intracellular cAMP levels upon blue light irradiation. Activation of PAC was dependent both on photon fluence rate and duration of irradiation, between which reciprocity held well in the range of 2--50 micromol m(-2) s(-1)(total fluence of 1200 micromol m(-2)). Intermittent irradiation also caused activation of PAC in a photon fluence-dependent manner irrespective of cycle periods. Wavelength dependency of PAC activation showed prominent peaks in the UV-B/C, UV-A and blue regions of the spectrum. The time course of the changes in intracellular cAMP levels corresponded well with that of the step-up photophobic response. From this and the kinetic properties of PAC photoactivation, we concluded that an increase in intracellular cAMP levels evoked by photoactivation of PAC is a key event of the step-up photophobic response.
164.

Disruption of the LOV-Jalpha helix interaction activates phototropin kinase activity.

blue LOV domains Background
Biochemistry, 28 Dec 2004 DOI: 10.1021/bi048092i Link to full text
Abstract: Light plays a crucial role in activating phototropins, a class of plant photoreceptors that are sensitive to blue and UV-A wavelengths. Previous studies indicated that phototropin uses a bound flavin mononucleotide (FMN) within its light-oxygen-voltage (LOV) domain to generate a protein-flavin covalent bond under illumination. In the C-terminal LOV2 domain of Avena sativa phototropin 1, formation of this bond triggers a conformational change that results in unfolding of a helix external to this domain called Jalpha [Harper, S. M., et al. (2003) Science 301, 1541-1545]. Though the structural effects of illumination were characterized, it was unknown how these changes are coupled to kinase activation. To examine this, we made a series of point mutations along the Jalpha helix to disrupt its interaction with the LOV domain in a manner analogous to light activation. Using NMR spectroscopy and limited proteolysis, we demonstrate that several of these mutations displace the Jalpha helix from the LOV domain independently of illumination. When placed into the full-length phototropin protein, these point mutations display constitutive kinase activation, without illumination of the sample. These results indicate that unfolding of the Jalpha helix is the critical event in regulation of kinase signaling for the phototropin proteins.
165.

VIVID is a flavoprotein and serves as a fungal blue light photoreceptor for photoadaptation.

blue LOV domains Background
EMBO J, 15 Sep 2003 DOI: 10.1093/emboj/cdg451 Link to full text
Abstract: Blue light regulates many physiological and developmental processes in fungi. Most of the blue light responses in the ascomycete Neurospora crassa are dependent on the two blue light regulatory proteins White Collar (WC)-1 and -2. WC-1 has recently been shown to be the first fungal blue light photoreceptor. In the present study, we characterize the Neurospora protein VIVID. VIVID shows a partial sequence similarity with plant blue light photoreceptors. In addition, we found that VIVID non-covalently binds a flavin chromophore. Upon illumination with blue light, VIVID undergoes a photocycle indicative of the formation of a flavin-cysteinyl adduct. VVD is localized in the cytoplasm and is only present after light induction. A loss-of-function vvd mutant was insensitive to increases in light intensities. Furthermore, mutational analysis of the photoactive cysteine indicated that the formation of a flavin-cysteinyl adduct is essential for VIVID functions in vivo. Our results show that VIVID is a second fungal blue light photoreceptor which enables Neurospora to perceive and respond to daily changes in light intensity.
166.

Structural basis of a phototropin light switch.

blue LOV domains Background
Science, 12 Sep 2003 DOI: 10.1126/science.1086810 Link to full text
Abstract: Phototropins are light-activated kinases important for plant responses to blue light. Light initiates signaling in these proteins by generating a covalent protein-flavin mononucleotide (FMN) adduct within sensory Per-ARNT-Sim (PAS) domains. We characterized the light-dependent changes of a phototropin PAS domain by solution nuclear magnetic resonance spectroscopy and found that an alpha helix located outside the canonical domain plays a key role in this activation process. Although this helix associates with the PAS core in the dark, photoinduced changes in the domain structure disrupt this interaction. We propose that this mechanism couples light-dependent bond formation to kinase activation and identifies a signaling pathway conserved among PAS domains.
167.

The LOV domain family: photoresponsive signaling modules coupled to diverse output domains.

blue Fluorescent proteins LOV domains Review Background
Biochemistry, 14 Jan 2003 DOI: 10.1021/bi026978l Link to full text
Abstract: For single-cell and multicellular systems to survive, they must accurately sense and respond to their cellular and extracellular environment. Light is a nearly ubiquitous environmental factor, and many species have evolved the capability to respond to this extracellular stimulus. Numerous photoreceptors underlie the activation of light-sensitive signal transduction cascades controlling these responses. Here, we review the properties of the light, oxygen, or voltage (LOV) family of blue-light photoreceptor domains, a subset of the Per-ARNT-Sim (PAS) superfamily. These flavin-binding domains, first identified in the higher-plant phototropins, are now shown to be present in plants, fungi, and bacteria. Notably, LOV domains are coupled to a wide array of other domains, including kinases, phosphodiesterases, F-box domains, STAS domains, and zinc fingers, which suggests that the absorption of blue light by LOV domains regulates the activity of these structurally and functionally diverse domains. LOV domains contain a conserved molecular volume extending from the flavin cofactor, which is the locus for light-driven structural change, to the molecular surface. We discuss the role of this conserved volume of structure in LOV-regulated processes.
168.

BLUF: a novel FAD-binding domain involved in sensory transduction in microorganisms.

blue red BLUF domains Fluorescent proteins LOV domains Phytochromes Background
Trends Biochem Sci, 1 Oct 2002 DOI: 10.1016/s0968-0004(02)02181-3 Link to full text
Abstract: A novel FAD-binding domain, BLUF, exemplified by the N-terminus of the AppA protein from Rhodobacter sphaeroides, is present in various proteins, primarily from Bacteria. The BLUF domain is involved in sensing blue-light (and possibly redox) using FAD and is similar to the flavin-binding PAS domains and cryptochromes. The predicted secondary structure reveals that the BLUF domain is a novel FAD-binding fold.
169.

Phototropins: a new family of flavin-binding blue light receptors in plants.

blue LOV domains Review Background
Antioxid Redox Signal, 5 Nov 2001 DOI: 10.1089/15230860152664975 Link to full text
Abstract: Phototropin is the designation originally assigned to a recently characterized chromoprotein that serves as a photoreceptor for phototropism. Phototropin is a light-activated autophosphorylating serine/threonine kinase that binds two flavin mononucleotide (FMN) molecules that function as blue light-absorbing chromophores. Each FMN molecule is bound in a rigid binding pocket within specialized PAS (PER-ARNT-SIM superfamily) domains, known as LOV (light, oxygen, or voltage) domains. This article reviews the detailed photobiological and biochemical characterization of the light-activated phosphorylation reaction of phototropin and follows the sequence of events leading to the cloning, sequencing, and characterization of the gene and the subsequent biochemical characterization of its encoded protein. It then considers recent biochemical and photochemical evidence that light activation of phototropin involves the formation of a cysteinyl adduct at the C(4a) position of the FMN chromophores. Adduct formation causes a major conformational change in the chromophores and a possible conformational change in the protein moiety as well. The review concludes with a brief discussion of the evidence for a second phototropin-like protein in Arabidopsis and rice. Possible roles for this photoreceptor are discussed.
170.

Phytochrome B binds with greater apparent affinity than phytochrome A to the basic helix-loop-helix factor PIF3 in a reaction requiring the PAS domain of PIF3.

red Phytochromes Background
Proc Natl Acad Sci USA, 21 Nov 2000 DOI: 10.1073/pnas.230433797 Link to full text
Abstract: The signaling pathways by which the phytochrome (phy) family of photoreceptors transmits sensory information to light-regulated genes remain to be fully defined. Evidence for a relatively direct pathway has been provided by the binding of one member of the family, phyB, to a promoter-element-bound, basic helix-loop-helix protein, PIF3, specifically upon light-induced conversion of the photoreceptor molecule to its biologically active conformer (Pfr). Here, we show that phyA also binds selectively and reversibly to PIF3 upon photoconversion to Pfr, but that the apparent affinity of PIF3 for phyA is 10-fold lower than for phyB. This result is consistent with previous in vivo data from PIF3-deficient Arabidopsis, indicating that PIF3 has a major role in phyB signaling, but a more minor role in phyA signaling. We also show that phyB binds stoichiometrically to PIF3 at an equimolar ratio, suggesting that the resultant complex is the unit active in transcriptional regulation at target promoters. Deletion mapping suggests that a 37-aa segment present at the N terminus of phyB, but absent from phyA, contributes strongly to the high binding affinity of phyB for PIF3. Conversely, deletion mapping and point mutation analysis of PIF3 for determinants involved in recognition of phyB indicates that the PAS domain of PIF3 is a major contributor to this interaction, but that a second determinant in the C-terminal domain is also necessary.
171.

Binding of phytochrome B to its nuclear signalling partner PIF3 is reversibly induced by light.

red Phytochromes Background
Nature, 19 Aug 1999 DOI: 10.1038/23500 Link to full text
Abstract: The phytochrome photoreceptor family directs plant gene expression by switching between biologically inactive and active conformers in response to the sequential absorption of red and farred photons. Several intermediates that act late in the phytochrome signalling pathway have been identified, but fewer have been identified that act early in the pathway. We have cloned a nuclear basic helix-loop-helix protein, PIF3, which can bind to non-photoactive carboxy-terminal fragments of phytochromes A and B and functions in phytochrome signalling in vivo. Here we show that full-length photoactive phytochrome B binds PIF3 in vitro only upon light-induced conversion to its active form, and that photoconversion back to its inactive form causes dissociation from PIF3. We conclude that photosensory signalling by phytochrome B involves light-induced, conformer-specific recognition of the putative transcriptional regulator PIF3, providing a potential mechanism for direct photoregulation of gene expression.
Submit a new publication to our database