Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 1 of 1 results
1.

Guided by light: optogenetic control of microtubule gliding assays.

blue TULIP in vitro
Nano Lett, 19 Nov 2018 DOI: 10.1021/acs.nanolett.8b03011 Link to full text
Abstract: Force generation by molecular motors drives biological processes such as asymmetric cell division and cell migration. Microtubule gliding assays, in which surface-immobilized motor proteins drive microtubule propulsion, are widely used to study basic motor properties as well as the collective behavior of active self-organized systems. Additionally, these assays can be employed for nanotechnological applications such as analyte detection, bio-computation and mechanical sensing. While such assays allow tight control over the experimental conditions, spatiotemporal control of force generation has remained underdeveloped. Here we use light-inducible protein-protein interactions to recruit molecular motors to the surface to control microtubule gliding activity in vitro. We show that using these light-inducible interactions, proteins can be recruited to the surface in patterns, reaching a ~5-fold enrichment within 6 seconds upon illumination. Subsequently, proteins are released with a half-life of 13 seconds when the illumination is stopped. We furthermore demonstrate that light-controlled kinesin recruitment results in reversible activation of microtubule gliding along the surface, enabling efficient control over local microtubule motility. Our approach to locally control force generation offers a way to study the effects of non-uniform pulling forces on different microtubule arrays and also provides novel strategies for local control in nanotechnological applications.
Submit a new publication to our database