Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 5 of 5 results
1.

Synthetic gene networks recapitulate dynamic signal decoding and differential gene expression.

blue CRY2/CIB1 EL222 S. cerevisiae Transgene expression
bioRxiv, 7 Jan 2021 DOI: 10.1101/2021.01.07.425755 Link to full text
Abstract: Cells live in constantly changing environments and employ dynamic signaling pathways to transduce information about the signals they encounter. However, the mechanisms by which dynamic signals are decoded into appropriate gene expression patterns remain poorly understood. Here, we devise networked optogenetic pathways that achieve novel dynamic signal processing functions that recapitulate cellular information processing. Exploiting light-responsive transcriptional regulators with differing response kinetics, we build a falling-edge pulse-detector and show that this circuit can be employed to demultiplex dynamically encoded signals. We combine this demultiplexer with dCas9-based gene networks to construct pulsatile-signal filters and decoders. Applying information theory, we show that dynamic multiplexing significantly increases the information transmission capacity from signal to gene expression state. Finally, we use dynamic multiplexing for precise multidimensional regulation of a heterologous metabolic pathway. Our results elucidate design principles of dynamic information processing and provide original synthetic systems capable of decoding complex signals for biotechnological applications.
2.

Cell-in-the-loop pattern formation with optogenetically emulated cell-to-cell signaling.

blue EL222 S. cerevisiae Transgene expression
Nat Commun, 13 Mar 2020 DOI: 10.1038/s41467-020-15166-3 Link to full text
Abstract: Designing and implementing synthetic biological pattern formation remains challenging due to underlying theoretical complexity as well as the difficulty of engineering multicellular networks biochemically. Here, we introduce a cell-in-the-loop approach where living cells interact through in silico signaling, establishing a new testbed to interrogate theoretical principles when internal cell dynamics are incorporated rather than modeled. We present an easy-to-use theoretical test to predict the emergence of contrasting patterns in gene expression among laterally inhibiting cells. Guided by the theory, we experimentally demonstrate spontaneous checkerboard patterning in an optogenetic setup, where cell-to-cell signaling is emulated with light inputs calculated in silico from real-time gene expression measurements. The scheme successfully produces spontaneous, persistent checkerboard patterns for systems of sixteen patches, in quantitative agreement with theoretical predictions. Our research highlights how tools from dynamical systems theory may inform our understanding of patterning, and illustrates the potential of cell-in-the-loop for engineering synthetic multicellular systems.
3.

Pulsatile inputs achieve tunable attenuation of gene expression variability and graded multi-gene regulation.

blue EL222 S. cerevisiae
Nat Commun, 30 Aug 2018 DOI: 10.1038/s41467-018-05882-2 Link to full text
Abstract: Many natural transcription factors are regulated in a pulsatile fashion, but it remains unknown whether synthetic gene expression systems can benefit from such dynamic regulation. Here we find, using a fast-acting, optogenetic transcription factor in Saccharomyces cerevisiae, that dynamic pulsatile signals reduce cell-to-cell variability in gene expression. We then show that by encoding such signals into a single input, expression mean and variability can be independently tuned. Further, we construct a light-responsive promoter library and demonstrate how pulsatile signaling also enables graded multi-gene regulation at fixed expression ratios, despite differences in promoter dose-response characteristics. Pulsatile regulation can thus lead to beneficial functional behaviors in synthetic biological systems, which previously required laborious optimization of genetic parts or the construction of synthetic gene networks.
4.

An Optogenetic Platform for Real-Time, Single-Cell Interrogation of Stochastic Transcriptional Regulation.

blue EL222 S. cerevisiae
Mol Cell, 17 May 2018 DOI: 10.1016/j.molcel.2018.04.012 Link to full text
Abstract: Transcription is a highly regulated and inherently stochastic process. The complexity of signal transduction and gene regulation makes it challenging to analyze how the dynamic activity of transcriptional regulators affects stochastic transcription. By combining a fast-acting, photo-regulatable transcription factor with nascent RNA quantification in live cells and an experimental setup for precise spatiotemporal delivery of light inputs, we constructed a platform for the real-time, single-cell interrogation of transcription in Saccharomyces cerevisiae. We show that transcriptional activation and deactivation are fast and memoryless. By analyzing the temporal activity of individual cells, we found that transcription occurs in bursts, whose duration and timing are modulated by transcription factor activity. Using our platform, we regulated transcription via light-driven feedback loops at the single-cell level. Feedback markedly reduced cell-to-cell variability and led to qualitative differences in cellular transcriptional dynamics. Our platform establishes a flexible method for studying transcriptional dynamics in single cells.
5.

Engineering light-inducible nuclear localization signals for precise spatiotemporal control of protein dynamics in living cells.

blue AsLOV2 HEK293T HeLa Hep G2 S. cerevisiae Cell cycle control
Nat Commun, 14 Jul 2014 DOI: 10.1038/ncomms5404 Link to full text
Abstract: The function of many eukaryotic proteins is regulated by highly dynamic changes in their nucleocytoplasmic distribution. The ability to precisely and reversibly control nuclear translocation would, therefore, allow dissecting and engineering cellular networks. Here we develop a genetically encoded, light-inducible nuclear localization signal (LINuS) based on the LOV2 domain of Avena sativa phototropin 1. LINuS is a small, versatile tag, customizable for different proteins and cell types. LINuS-mediated nuclear import is fast and reversible, and can be tuned at different levels, for instance, by introducing mutations that alter AsLOV2 domain photo-caging properties or by selecting nuclear localization signals (NLSs) of various strengths. We demonstrate the utility of LINuS in mammalian cells by controlling gene expression and entry into mitosis with blue light.
Submit a new publication to our database