Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 5 of 5 results
1.

Steering Molecular Activity with Optogenetics: Recent Advances and Perspectives.

blue cyan green near-infrared red UV violet BLUF domains Cobalamin-binding domains Cryptochromes Cyanobacteriochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Adv Biol, 14 Jan 2021 DOI: 10.1002/adbi.202000180 Link to full text
Abstract: Optogenetics utilizes photosensitive proteins to manipulate the localization and interaction of molecules in living cells. Because light can be rapidly switched and conveniently confined to the sub‐micrometer scale, optogenetics allows for controlling cellular events with an unprecedented resolution in time and space. The past decade has witnessed an enormous progress in the field of optogenetics within the biological sciences. The ever‐increasing amount of optogenetic tools, however, can overwhelm the selection of appropriate optogenetic strategies. Considering that each optogenetic tool may have a distinct mode of action, a comparative analysis of the current optogenetic toolbox can promote the further use of optogenetics, especially by researchers new to this field. This review provides such a compilation that highlights the spatiotemporal accuracy of current optogenetic systems. Recent advances of optogenetics in live cells and animal models are summarized, the emerging work that interlinks optogenetics with other research fields is presented, and exciting clinical and industrial efforts to employ optogenetic strategy toward disease intervention are reported.
2.

Optical control of ERK and AKT signaling promotes axon regeneration and functional recovery of PNS and CNS in Drosophila.

blue CRY2/CIB1 D. melanogaster in vivo HEK293T PC-12 Signaling cascade control
Elife, 6 Oct 2020 DOI: 10.7554/elife.57395 Link to full text
Abstract: Neuroregeneration is a dynamic process synergizing the functional outcomes of multiple signaling circuits. Channelrhodopsin-based optogenetics shows the feasibility of stimulating neural repair but does not pin down specific signaling cascades. Here, we utilized optogenetic systems, optoRaf and optoAKT, to delineate the contribution of the ERK and AKT signaling pathways to neuroregeneration in live Drosophila larvae. We showed that optoRaf or optoAKT activation not only enhanced axon regeneration in both regeneration-competent and -incompetent sensory neurons in the peripheral nervous system but also allowed temporal tuning and proper guidance of axon regrowth. Furthermore, optoRaf and optoAKT differ in their signaling kinetics during regeneration, showing a gated versus graded response, respectively. Importantly in the central nervous system, their activation promotes axon regrowth and functional recovery of the thermonociceptive behavior. We conclude that non-neuronal optogenetics target damaged neurons and signaling subcircuits, providing a novel strategy in the intervention of neural damage with improved precision.
3.

Optogenetically Controlled TrkA Activity Improves the Regenerative Capacity of Hair-Follicle-Derived Stem Cells to Differentiate into Neurons and Glia.

blue VfAU1-LOV hair-follicle-derived stem cells Cell differentiation
Adv Biosyst, 13 Sep 2020 DOI: 10.1002/adbi.202000134 Link to full text
Abstract: Hair-follicle-derived stem cells (HSCs) originating from the bulge region of the mouse vibrissa hair follicle are able to differentiate into neuronal and glial lineage cells. The tropomyosin receptor kinase A (TrkA) receptor that is expressed on these cells plays key roles in mediating the survival and differentiation of neural progenitors as well as in the regulation of the growth and regeneration of different neural systems. In this study, the OptoTrkA system is introduced, which is able to stimulate TrkA activity via blue-light illumination in HSCs. This allows to determine whether TrkA signaling is capable of influencing the proliferation, migration, and neural differentiation of these somatic stem cells. It is found that OptoTrkA is able to activate downstream molecules such as ERK and AKT with blue-light illumination, and subsequently able to terminate this kinase activity in the dark. HSCs with OptoTrkA activity show an increased ability for proliferation and migration and also exhibited accelerated neuronal and glial cell differentiation. These findings suggest that the precise control of TrkA activity using optogenetic tools is a viable strategy for the regeneration of neurons from HSCs, and also provides a novel insight into the clinical application of optogenetic tools in cell-transplantation therapy.
4.

Syntaxin Clustering and Optogenetic Control for Synaptic Membrane Fusion.

blue Cryptochromes LOV domains Review
J Mol Biol, 16 Jul 2020 DOI: 10.1016/j.jmb.2020.07.005 Link to full text
Abstract: Membrane fusion during synaptic transmission mediates the trafficking of chemical signals and neuronal communication. The fast kinetics of membrane fusion on the order of millisecond is precisely regulated by the assembly of SNAREs and accessory proteins. It is believed that the formation of the SNARE complex is a key step during membrane fusion. Little is known, however, about the molecular machinery that mediates the formation of a large pre-fusion complex, including multiple SNAREs and accessory proteins. Syntaxin, a transmembrane protein on the plasma membrane, has been observed to undergo oligomerization to form clusters. Whether this clustering plays a critical role in membrane fusion is poorly understood in live cells. Optogenetics is an emerging biotechnology armed with the capacity to precisely modulate protein-protein interaction in time and space. Here, we propose an experimental scheme that combines optogenetics with single-vesicle membrane fusion, aiming to gain a better understanding of the molecular mechanism by which the syntaxin cluster regulates membrane fusion. We envision that newly developed optogenetic tools could facilitate the mechanistic understanding of synaptic transmission in live cells and animals.
5.

Early But Not Delayed Optogenetic RAF Activation Promotes Astrocytogenesis in Mouse Neural Progenitors.

blue CRY2/CIB1 mouse neural progenitor cells Signaling cascade control Developmental processes
J Mol Biol, 26 Jun 2020 DOI: 10.1016/j.jmb.2020.06.020 Link to full text
Abstract: The RAS/RAF/MEK/ERK pathway promotes gliogenesis but the kinetic role of RAF1, a key RAF kinase, in the induction of astrocytogenesis remains to be elucidated. To address this challenge, we determine the temporal functional outcome of RAF1 during mouse neural progenitor cell differentiation using an optogenetic RAF1 system (OptoRAF1). OptoRAF1 allows for reversible activation of the RAF/MEK/ERK pathway via plasma membrane recruitment of RAF1 based on blue light-sensitive protein dimerizer CRY2/CIB1. We found that early light-induced OptoRAF1 activation in neural progenitor cells promotes cell proliferation and increased expression of glial markers and glia-enriched genes. However, delayed OptoRAF1 activation in differentiated neural progenitor had little effect on glia marker expression, suggesting that RAF1 is required to promote astrocytogenesis only within a short time window. In addition, activation of OptoRAF1 did not have a significant effect on neurogenesis, but was able to promote neuronal neurite growth.
Submit a new publication to our database