Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results
1.

Light-Inducible Recombinases for Bacterial Optogenetics.

blue Magnets VVD E. coli Nucleic acid editing
ACS Synth Biol, 21 Jan 2020 DOI: 10.1021/acssynbio.9b00395 Link to full text
Abstract: Optogenetic tools can provide direct and programmable control of gene expression. Light-inducible recombinases, in particular, offer a powerful method for achieving precise spatiotemporal control of DNA modification. However, to-date this technology has been largely limited to eukaryotic systems. Here, we develop optogenetic recombinases for Escherichia coli that activate in response to blue light. Our approach uses a split recombinase coupled with photodimers, where blue light brings the split protein together to form a functional recombinase. We tested both Cre and Flp recombinases, Vivid and Magnet photodimers, and alternative protein split sites in our analysis. The optimal configuration, Opto-Cre-Vvd, exhibits strong blue light-responsive excision and low ambient light sensitivity. For this system we characterize the effect of light intensity and the temporal dynamics of light-induced recombination. These tools expand the microbial optogenetic toolbox, offering the potential for precise control of DNA excision with light-inducible recombinases in bacteria.
2.

Cell-machine interfaces for characterizing gene regulatory network dynamics.

green red Cyanobacteriochromes Phytochromes Review
Curr Opin Syst Biol, 1 Feb 2019 DOI: 10.1016/j.coisb.2019.01.001 Link to full text
Abstract: Gene regulatory networks and the dynamic responses they produce offer a wealth of information about how biological systems process information about their environment. Recently, researchers interested in dissecting these networks have been outsourcing various parts of their experimental workflow to computers. Here we review how, using microfluidic or optogenetic tools coupled with fluorescence imaging, it is now possible to interface cells and computers. These platforms enable scientists to perform informative dynamic stimulations of genetic pathways and monitor their reaction. It is also possible to close the loop and regulate genes in real time, providing an unprecedented view of how signals propagate through the network. Finally, we outline new tools that can be used within the framework of cell-machine interfaces.
Submit a new publication to our database