Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 4 of 4 results
1.

Optogenetic control of integrin-matrix interaction.

red PhyB/PIF6 HEK293T HeLa MCF7 Signaling cascade control Control of cell-cell / cell-material interactions
Commun Biol, 8 Jan 2019 DOI: 10.1038/s42003-018-0264-7 Link to full text
Abstract: Optogenetic approaches have gathered momentum in precisely modulating and interrogating cellular signalling and gene expression. The use of optogenetics on the outer cell surface to interrogate how cells receive stimuli from their environment, however, has so far not reached its full potential. Here we demonstrate the development of an optogenetically regulated membrane receptor-ligand pair exemplified by the optically responsive interaction of an integrin receptor with the extracellular matrix. The system is based on an integrin engineered with a phytochrome-interacting factor domain (OptoIntegrin) and a red light-switchable phytochrome B-functionalized matrix (OptoMatrix). This optogenetic receptor-ligand pair enables light-inducible and -reversible cell-matrix interaction, as well as the controlled activation of downstream mechanosensory signalling pathways. Pioneering the application of optogenetic switches in the extracellular environment of cells, this OptoMatrix–OptoIntegrin system may serve as a blueprint for rendering matrix–receptor interactions amendable to precise control with light.
2.

Dual-controlled optogenetic system for the rapid down-regulation of protein levels in mammalian cells.

blue AsLOV2 EL222 CHO-K1 Cos-7 HEK293 HEK293T HeLa isolated MEFs NIH/3T3 Cell death
Sci Rep, 9 Oct 2018 DOI: 10.1038/s41598-018-32929-7 Link to full text
Abstract: Optogenetic switches are emerging molecular tools for studying cellular processes as they offer higher spatiotemporal and quantitative precision than classical, chemical-based switches. Light-controllable gene expression systems designed to upregulate protein expression levels meanwhile show performances superior to their chemical-based counterparts. However, systems to reduce protein levels with similar efficiency are lagging behind. Here, we present a novel two-component, blue light-responsive optogenetic OFF switch (‘Blue-OFF’), which enables a rapid and quantitative down-regulation of a protein upon illumination. Blue-OFF combines the first light responsive repressor KRAB-EL222 with the protein degradation module B-LID (blue light-inducible degradation domain) to simultaneously control gene expression and protein stability with a single wavelength. Blue-OFF thus outperforms current optogenetic systems for controlling protein levels. The system is described by a mathematical model which aids in the choice of experimental conditions such as light intensity and illumination regime to obtain the desired outcome. This approach represents an advancement of dual-controlled optogenetic systems in which multiple photosensory modules operate synergistically. As exemplified here for the control of apoptosis in mammalian cell culture, the approach opens up novel perspectives in fundamental research and applications such as tissue engineering.
3.

Optogenetic control shows that kinetic proofreading regulates the activity of the T cell receptor.

red PhyB/PIF6 Jurkat Signaling cascade control Immediate control of second messengers
bioRxiv, 1 Oct 2018 DOI: 10.1101/432740 Link to full text
Abstract: The pivotal task of the immune system is to distinguish between self and foreign antigens. The kinetic proofreading model (KPR) proposes that T cells discriminate self from foreign ligands by the different ligand binding half-lives to the T cell receptor (TCR). It is challenging to test KPR as the available experimental systems fall short of only altering the binding half-lives and keeping other parameters of the ligand-TCR interaction unchanged. We engineered an optogenetic system using the plant photoreceptor phytochrome B to selectively control the dynamics of ligand binding to the TCR by light. Combining experiments with mathematical modeling we find that the ligand-TCR interaction half-life is the decisive factor for activating downstream TCR signaling, substantiating the KPR hypothesis.
4.

Red Light-Regulated Reversible Nuclear Localization of Proteins in Mammalian Cells and Zebrafish.

red PhyB/PIF3 CHO-K1 Cos-7 HEK293T HeLa NIH/3T3 zebrafish in vivo
ACS Synth Biol, 30 Mar 2015 DOI: 10.1021/acssynbio.5b00004 Link to full text
Abstract: Protein trafficking in and out of the nucleus represents a key step in controlling cell fate and function. Here we report the development of a red light-inducible and far-red light-reversible synthetic system for controlling nuclear localization of proteins in mammalian cells and zebrafish. First, we synthetically reconstructed and validated the red light-dependent Arabidopsis phytochrome B nuclear import mediated by phytochrome-interacting factor 3 in a nonplant environment and support current hypotheses on the import mechanism in planta. On the basis of this principle we next regulated nuclear import and activity of target proteins by the spatiotemporal projection of light patterns. A synthetic transcription factor was translocated into the nucleus of mammalian cells and zebrafish to drive transgene expression. These data demonstrate the first in vivo application of a plant phytochrome-based optogenetic tool in vertebrates and expand the repertoire of available light-regulated molecular devices.
Submit a new publication to our database