Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 25 of 46 results
Not Review Not Background

Integration of intermittent calcium signals in T cells revealed by temporally patterned optogenetics.

blue CRY2olig B3Z T cell hybridomas mouse T cells Immediate control of second messengers
iScience, 26 Jan 2023 DOI: 10.1016/j.isci.2023.106068 Link to full text
Abstract: T cells become activated following one or multiple contacts with antigen-presenting cells. Calcium influx is a key signaling event elicited during these cellular interactions; however, it is unclear whether T cells recall and integrate calcium signals elicited during temporally separated contacts. To study the integration of calcium signals, we designed a programmable, multiplex illumination strategy for temporally patterned optogenetics (TEMPO). We found that a single round of calcium elevation was insufficient to promote nuclear factor of activated T cells (NFAT) activity and cytokine production in a T cell line. However, robust responses were detected after a second identical stimulation even when signals were separated by several hours. Our results suggest the existence of a biochemical memory of calcium signals in T cells that favors signal integration during temporally separated contacts and promote cytokine production. As illustrated here, TEMPO is a versatile approach for dissecting temporal integration in defined signaling pathways.

DIAPH3 condensates formed by liquid-liquid phase separation act as a regulatory hub for stress-induced actin cytoskeleton remodeling.

blue CRY2olig HeLa Organelle manipulation
Cell Rep, 10 Jan 2023 DOI: 10.1016/j.celrep.2022.111986 Link to full text
Abstract: Membraneless condensates, such as stress granules (SGs) and processing bodies (P-bodies), have attracted wide attention due to their unique feature of rapid response to stress without first requiring nuclear feedback. In this study, we identify diaphanous-related formin 3 (DIAPH3), an actin nucleator, as a scaffold protein to initiate liquid-liquid phase separation (LLPS) and form abundant cytosolic phase-separated DIAPH3 granules (D-granules) in mammalian cells such as HeLa, HEK293, and fibroblasts under various stress conditions. Neither mRNAs nor known stress-associated condensate markers, such as G3BP1, G3BP2, and TIA1 for SGs and DCP1A for P-bodies, are detected in D-granules. Using overexpression and knockout of DIAPH3, pharmacological interventions, and optogenetics, we further demonstrate that stress-induced D-granules spatially sequester DIAPH3 within the condensation to inhibit the assembly of actin filaments in filopodia. This study reveals that D-granules formed by LLPS act as a regulatory hub for actin cytoskeletal remodeling in response to stress.

Rapid and reversible optogenetic silencing of synaptic transmission by clustering of synaptic vesicles.

blue CRY2/CIB1 CRY2olig C. elegans in vivo primary mouse hippocampal neurons zebrafish in vivo Control of vesicular transport Organelle manipulation
Nat Commun, 19 Dec 2022 DOI: 10.1038/s41467-022-35324-z Link to full text
Abstract: Acutely silencing specific neurons informs about their functional roles in circuits and behavior. Existing optogenetic silencers include ion pumps, channels, metabotropic receptors, and tools that damage the neurotransmitter release machinery. While the former hyperpolarize the cell, alter ionic gradients or cellular biochemistry, the latter allow only slow recovery, requiring de novo synthesis. Thus, tools combining fast activation and reversibility are needed. Here, we use light-evoked homo-oligomerization of cryptochrome CRY2 to silence synaptic transmission, by clustering synaptic vesicles (SVs). We benchmark this tool, optoSynC, in Caenorhabditis elegans, zebrafish, and murine hippocampal neurons. optoSynC clusters SVs, observable by electron microscopy. Locomotion silencing occurs with tauon ~7.2 s and recovers with tauoff ~6.5 min after light-off. optoSynC can inhibit exocytosis for several hours, at very low light intensities, does not affect ion currents, biochemistry or synaptic proteins, and may further allow manipulating different SV pools and the transfer of SVs between them.

Optogenetic control of GGGGCC repeat-containing RNA phase transition.

blue CRY2olig HEK293T Organelle manipulation
Fundam res, 9 Sep 2022 DOI: 10.1016/j.fmre.2022.09.001 Link to full text
Abstract: The GGGGCC (G4C2) hexanucleotide repeat expansion in the C9ORF72 gene is a major cause of both hereditary amyotrophic lateral sclerosis and familial frontotemporal dementia. Recent studies have shown that G4C2 hexanucleotide repeat-containing RNA transcripts ((G4C2)n RNA) could go through liquid-liquid phase separation to form RNA foci, which may elicit neurodegeneration. However, the direct causality between these abnormal RNA foci and neuronal toxicity remains to be demonstrated. Here we introduce an optogenetic control system that can induce the assembly and phase separation of (G4C2)n RNA foci with blue light illumination in human cells, by fusing a specific (G4C2)n RNA binding protein as the linker domain to Cry2, a protein that oligomerizes in response to blue light. Our results demonstrate that a higher number of G4C2 repeats have the potential to be induced into more RNA foci in the cells. Both spontaneous and induced RNA foci display liquid-like properties according to FRAP measurements. Computational simulation shows strong consistency with the experimental results and supports the effect of our system to promote the propensity of (G4C2)n RNA towards phase separation. This system can thus be used to investigate whether (G4C2)n RNA foci would disrupt normal cellular processes and lead to pathological phenotypes relevant to repeat expansion disorders.

Wiskott-Aldrich syndrome protein forms nuclear condensates and regulates alternative splicing.

blue CRY2olig HEK293 Organelle manipulation
Nat Commun, 25 Jun 2022 DOI: 10.1038/s41467-022-31220-8 Link to full text
Abstract: The diverse functions of WASP, the deficiency of which causes Wiskott-Aldrich syndrome (WAS), remain poorly defined. We generated three isogenic WAS models using patient induced pluripotent stem cells and genome editing. These models recapitulated WAS phenotypes and revealed that WASP deficiency causes an upregulation of numerous RNA splicing factors and widespread altered splicing. Loss of WASP binding to splicing factor gene promoters frequently leads to aberrant epigenetic activation. WASP interacts with dozens of nuclear speckle constituents and constrains SRSF2 mobility. Using an optogenetic system, we showed that WASP forms phase-separated condensates that encompasses SRSF2, nascent RNA and active Pol II. The role of WASP in gene body condensates is corroborated by ChIPseq and RIPseq. Together our data reveal that WASP is a nexus regulator of RNA splicing that controls the transcription of splicing factors epigenetically and the dynamics of the splicing machinery through liquid-liquid phase separation.

PPARγ phase separates with RXRα at PPREs to regulate target gene expression.

blue CRY2olig HEK293T NIH/3T3 Organelle manipulation
Cell Discov, 26 Apr 2022 DOI: 10.1038/s41421-022-00388-0 Link to full text
Abstract: Peroxisome proliferator-activated receptor (PPAR)-γ is a key transcription activator controlling adipogenesis and lipid metabolism. PPARγ binds PPAR response elements (PPREs) as the obligate heterodimer with retinoid X receptor (RXR) α, but exactly how PPARγ orchestrates the transcriptional response is unknown. This study demonstrates that PPARγ forms phase-separated droplets in vitro and solid-like nuclear condensates in cell, which is intriguingly mediated by its DNA binding domain characterized by the zinc finger motif. Furthermore, PPARγ forms nuclear condensates at PPREs sites through phase separation to compartmentalize its heterodimer partner RXRα to initiate PPARγ-specific transcriptional activation. Finally, using an optogenetic approach, the enforced formation of PPARγ/RXRα condensates leads to preferential enrichment at PPREs sites and significantly promotes the expression of PPARγ target genes. These results define a novel mechanism by which PPARγ engages the phase separation principles for efficient and specific transcriptional activation.

Optogenetic activators of apoptosis, necroptosis, and pyroptosis.

blue CRY2olig Caco-2 HaCaT HEK293T HeLa MCF7 RAW264.7 zebrafish in vivo Cell death
J Cell Biol, 14 Apr 2022 DOI: 10.1083/jcb.202109038 Link to full text
Abstract: Targeted and specific induction of cell death in an individual or groups of cells hold the potential for new insights into the response of tissues or organisms to different forms of death. Here, we report the development of optogenetically controlled cell death effectors (optoCDEs), a novel class of optogenetic tools that enables light-mediated induction of three types of programmed cell death (PCD)-apoptosis, pyroptosis, and necroptosis-using Arabidopsis thaliana photosensitive protein Cryptochrome-2. OptoCDEs enable a rapid and highly specific induction of PCD in human, mouse, and zebrafish cells and are suitable for a wide range of applications, such as sub-lethal cell death induction or precise elimination of single cells or cell populations in vitro and in vivo. As the proof-of-concept, we utilize optoCDEs to assess the differences in neighboring cell responses to apoptotic or necrotic PCD, revealing a new role for shingosine-1-phosphate signaling in regulating the efferocytosis of the apoptotic cell by epithelia.

Optogenetic Phase Transition of TDP-43 in Spinal Motor Neurons of Zebrafish Larvae.

blue CRY2olig zebrafish in vivo
J Vis Exp, 25 Feb 2022 DOI: 10.3791/62932 Link to full text
Abstract: Abnormal protein aggregation and selective neuronal vulnerability are two major hallmarks of neurodegenerative diseases. Causal relationships between these features may be interrogated by controlling the phase transition of a disease-associated protein in a vulnerable cell type, although this experimental approach has been limited so far. Here, we describe a protocol to induce phase transition of the RNA/DNA-binding protein TDP-43 in spinal motor neurons of zebrafish larvae for modeling cytoplasmic aggregation of TDP-43 occurring in degenerating motor neurons in amyotrophic lateral sclerosis (ALS). We describe a bacterial artificial chromosome (BAC)-based genetic method to deliver an optogenetic TDP-43 variant selectively to spinal motor neurons of zebrafish. The high translucency of zebrafish larvae allows for the phase transition of the optogenetic TDP-43 in the spinal motor neurons by a simple external illumination using a light-emitting diode (LED) against unrestrained fish. We also present a basic workflow of live imaging of the zebrafish spinal motor neurons and image analysis with freely available Fiji/ImageJ software to characterize responses of the optogenetic TDP-43 to the light illumination. This protocol enables the characterization of TDP-43 phase transition and aggregate formation in an ALS-vulnerable cellular environment, which should facilitate an investigation of its cellular and behavioral consequences.

WNK kinases sense molecular crowding and rescue cell volume via phase separation.

blue CRY2olig HEK293 Organelle manipulation
bioRxiv, 11 Jan 2022 DOI: 10.1101/2022.01.10.475707 Link to full text
Abstract: When challenged by hypertonicity, dehydrated cells must defend their volume to survive. This process requires the phosphorylation-dependent regulation of SLC12 cation chloride transporters by WNK kinases, but how these kinases are activated by cell shrinkage remains unknown. Within seconds of cell exposure to hypertonicity, WNK1 concentrates into membraneless droplets, initiating a phosphorylation-dependent signal that drives net ion influx via the SLC12 cotransporters to rescue volume. The formation of WNK1 condensates is driven by its intrinsically disordered C-terminus, whose evolutionarily conserved signatures are necessary for efficient phase separation and volume recovery. This disorder-encoded phase behavior occurs within physiological constraints and is activated in vivo by molecular crowding rather than changes in cell size. This allows WNK1 to bypass a strengthened ionic milieu that favors kinase inactivity and reclaim cell volume through condensate-mediated signal amplification. Thus, WNK kinases are physiological crowding sensors that phase separate to coordinate a cell volume rescue response.

Optogenetic Manipulation of Cell Migration with High Spatiotemporal Resolution Using Lattice Lightsheet Microscopy.

blue CRY2/CIB1 CRY2olig U-2 OS Control of cytoskeleton / cell motility / cell shape
bioRxiv, 2 Jan 2022 DOI: 10.1101/2022.01.02.474058 Link to full text
Abstract: Lattice lightsheet microscopy (LLSM) is modified with the aim of manipulating cellular behavior with subcellular resolution through three-dimensional (3D) optogenetic activation. In this study, we report a straightforward implementation of the activation source in LLSM in which the stimulating light can be generated by changing the spatial light modulator (SLM) patterns and the annual masks. As a result, a Bessel beam as a stimulation source is integrated into the LLSM without changing the optical configuration, achieving high spatiotemporal activation. We show that the energy power required for optogenetic reactions is lower than 1 nW (24 mW/cm2) and membrane ruffling can be activated at different locations within a cell with subcellular resolution. We also demonstrate guided cell migration using optogenetic stimulation for up to 6 h with 463 volume imaging without noticeable damage to cells.

CeLINC, a fluorescence-based protein-protein interaction assay in Caenorhabditis elegans.

blue CRY2/CIB1 CRY2olig C. elegans in vivo Organelle manipulation
Genetics, 10 Dec 2021 DOI: 10.1093/genetics/iyab163 Link to full text
Abstract: Interactions among proteins are fundamental for life and determining whether two particular proteins physically interact can be essential for fully understanding a protein's function. We present Caenorhabditis elegans light-induced coclustering (CeLINC), an optical binary protein-protein interaction assay to determine whether two proteins interact in vivo. Based on CRY2/CIB1 light-dependent oligomerization, CeLINC can rapidly and unambiguously identify protein-protein interactions between pairs of fluorescently tagged proteins. A fluorescently tagged bait protein is captured using a nanobody directed against the fluorescent protein (GFP or mCherry) and brought into artificial clusters within the cell. Colocalization of a fluorescently tagged prey protein in the cluster indicates a protein interaction. We tested the system with an array of positive and negative reference protein pairs. Assay performance was extremely robust with no false positives detected in the negative reference pairs. We then used the system to test for interactions among apical and basolateral polarity regulators. We confirmed interactions seen between PAR-6, PKC-3, and PAR-3, but observed no physical interactions among the basolateral Scribble module proteins LET-413, DLG-1, and LGL-1. We have generated a plasmid toolkit that allows use of custom promoters or CRY2 variants to promote flexibility of the system. The CeLINC assay is a powerful and rapid technique that can be widely applied in C. elegans due to the universal plasmids that can be used with existing fluorescently tagged strains without need for additional cloning or genetic modification of the genome.

Activation of endoplasmic reticulum stress via clustering of inner nuclear membrane proteins.

blue CRY2olig HEK293FT U-2 OS Signaling cascade control
bioRxiv, 14 Sep 2021 DOI: 10.1101/2021.09.14.460295 Link to full text
Abstract: One of the major cellular mechanisms to ensure protein homeostasis is the endoplasmic reticulum (ER) stress response. This pathway is typically triggered by accumulation of misfolded proteins in the ER lumen. Here we describe activation of ER stress via protein aggregation in the cell nucleus. We find in the premature aging disease Hutchinson-Gilford Progeria Syndrome (HGPS) activation of ER stress due to the aggregation of the diseases-causing progerin protein at the nuclear envelope. The presence of nucleoplasmic protein aggregates is sensed and signaled to the ER lumen via immobilization and clustering of theinner nuclear membrane protein SUN2, leading to activation of the Unfolded Protein Response (UPR). These results identify a nuclear trigger of ER stress and they provide insight into the molecular disease mechanisms of HGPS.

Optogenetic activators of apoptosis, necroptosis and pyroptosis for probing cell death dynamics and bystander cell responses.

blue CRY2olig Caco-2 HaCaT HeLa MCF7 RAW264.7 Cell death
bioRxiv, 31 Aug 2021 DOI: 10.1101/2021.08.31.458313 Link to full text
Abstract: Targeted and specific induction of cell death in individual or groups of cells holds the potential for new insights into the response of tissues or organisms to different forms of death. Here we report the development of optogenetically-controlled cell death effectors (optoCDEs), a novel class of optogenetic tools that enables light-mediated induction of three types of programmed cell death (PCD) – apoptosis, pyroptosis and necroptosis – using Arabidopsis thaliana photosensitive protein Cryptochrome2. OptoCDEs enable rapid and highly specific induction of PCD in human, mouse and zebrafish cells and are suitable for a wide range of applications, such as sub-lethal cell death induction or precise elimination of single cells or cell populations in vitro and in vivo. As the proof-of-concept, we utilize optoCDEs to assess the differences in the neighboring cell response to apoptotic or necrotic PCD, revealing a new role for shingosine-1-phosphate signaling in regulating the efferocytosis of apoptotic cell by epithelia.

Interaction of tau with HNRNPA2B1 and N6-methyladenosine RNA mediates the progression of tauopathy.

blue CRY2olig HEK293T Neuro-2a primary mouse cortical neurons SH-SY5Y Organelle manipulation
Mol Cell, 20 Aug 2021 DOI: 10.1016/j.molcel.2021.07.038 Link to full text
Abstract: The microtubule-associated protein tau oligomerizes, but the actions of oligomeric tau (oTau) are unknown. We have used Cry2-based optogenetics to induce tau oligomers (oTau-c). Optical induction of oTau-c elicits tau phosphorylation, aggregation, and a translational stress response that includes stress granules and reduced protein synthesis. Proteomic analysis identifies HNRNPA2B1 as a principle target of oTau-c. The association of HNRNPA2B1 with endogenous oTau was verified in neurons, animal models, and human Alzheimer brain tissues. Mechanistic studies demonstrate that HNRNPA2B1 functions as a linker, connecting oTau with N6-methyladenosine (m6A) modified RNA transcripts. Knockdown of HNRNPA2B1 prevents oTau or oTau-c from associating with m6A or from reducing protein synthesis and reduces oTau-induced neurodegeneration. Levels of m6A and the m6A-oTau-HNRNPA2B1 complex are increased up to 5-fold in the brains of Alzheimer subjects and P301S tau mice. These results reveal a complex containing oTau, HNRNPA2B1, and m6A that contributes to the integrated stress response of oTau.

Photon Upconversion Hydrogels for 3D Optogenetics.

blue CRY2olig HeLa
Adv Funct Mater, 4 Jun 2021 DOI: 10.1002/adfm.202010907 Link to full text
Abstract: The ability to optically induce biological responses in 3D has been dwarfed by the physical limitations of visible light penetration to trigger photochemical processes. However, many biological systems are relatively transparent to low-energy light, which does not provide sufficient energy to induce photochemistry in 3D. To overcome this challenge, hydrogels that are capable of converting red or near-IR (NIR) light into blue light within the cell-laden 3D scaffolds are developed. The upconverted light can then excite optically active proteins in cells to trigger a photochemical response. The hydrogels operate by triplet–triplet annihilation upconversion. As proof-of-principle, it is found that the hydrogels trigger an optogenetic response by red/NIR irradiation of HeLa cells that have been engineered to express the blue-light sensitive protein Cry2olig. While it is remarkable to photoinduce the clustering of Cry2olig with blanket NIR irradiation in 3D, it is also demonstrated how the hydrogels trigger clustering within a single cell with great specificity and spatiotemporal control. In principle, these hydrogels may allow for photochemical control of cell function within 3D scaffolds, which can lead to a wealth of fundamental studies and biochemical applications.

Rac1 activation can generate untemplated, lamellar membrane ruffles.

blue AsLOV2 CRY2olig HeLa hTERT RPE-1 Control of cytoskeleton / cell motility / cell shape
BMC Biol, 13 Apr 2021 DOI: 10.1186/s12915-021-00997-3 Link to full text
Abstract: Membrane protrusions that occur on the dorsal surface of a cell are an excellent experimental system to study actin machinery at work in a living cell. Small GTPase Rac1 controls the membrane protrusions that form and encapsulate extracellular volumes to perform pinocytic or phagocytic functions.

A modular tool to query and inducibly disrupt biomolecular condensates.

blue CRY2/CIB1 CRY2olig Cos-7 HEK293T Organelle manipulation
Nat Commun, 22 Mar 2021 DOI: 10.1038/s41467-021-22096-1 Link to full text
Abstract: Dynamic membraneless compartments formed by protein condensates have multifunctional roles in cellular biology. Tools that inducibly trigger condensate formation have been useful for exploring their cellular function, however, there are few tools that provide inducible control over condensate disruption. To address this need we developed DisCo (Disassembly of Condensates), which relies on the use of chemical dimerizers to inducibly recruit a ligand to the condensate-forming protein, triggering condensate dissociation. We demonstrate use of DisCo to disrupt condensates of FUS, associated with amyotrophic lateral sclerosis, and to prevent formation of polyglutamine-containing huntingtin condensates, associated with Huntington's disease. In addition, we combined DisCo with a tool to induce condensates with light, CRY2olig, achieving bidirectional control of condensate formation and disassembly using orthogonal inputs of light and rapamycin. Our results demonstrate a method to manipulate condensate states that will have broad utility, enabling better understanding of the biological role of condensates in health and disease.

Optogenetic manipulation of cellular communication using engineered myosin motors.

blue CRY2olig Ambystoma mexicanum in vivo C3H/10T1/2 Cos-7 Control of cytoskeleton / cell motility / cell shape
Nat Cell Biol, 1 Feb 2021 DOI: 10.1038/s41556-020-00625-2 Link to full text
Abstract: Cells achieve highly efficient and accurate communication through cellular projections such as neurites and filopodia, yet there is a lack of genetically encoded tools that can selectively manipulate their composition and dynamics. Here, we present a versatile optogenetic toolbox of artificial multi-headed myosin motors that can move bidirectionally within long cellular extensions and allow for the selective transport of GFP-tagged cargo with light. Utilizing these engineered motors, we could transport bulky transmembrane receptors and organelles as well as actin remodellers to control the dynamics of both filopodia and neurites. Using an optimized in vivo imaging scheme, we further demonstrate that, upon limb amputation in axolotls, a complex array of filopodial extensions is formed. We selectively modulated these filopodial extensions and showed that they re-establish a Sonic Hedgehog signalling gradient during regeneration. Considering the ubiquitous existence of actin-based extensions, this toolbox shows the potential to manipulate cellular communication with unprecedented accuracy.

The proline-rich domain promotes Tau liquid-liquid phase separation in cells.

blue CRY2olig SH-SY5Y Control of cytoskeleton / cell motility / cell shape Organelle manipulation
J Cell Biol, 2 Nov 2020 DOI: 10.1083/jcb.202006054 Link to full text
Abstract: Tau protein in vitro can undergo liquid-liquid phase separation (LLPS); however, observations of this phase transition in living cells are limited. To investigate protein state transitions in living cells, we attached Cry2 to Tau and studied the contribution of each domain that drives the Tau cluster in living cells. Surprisingly, the proline-rich domain (PRD), not the microtubule binding domain (MTBD), drives LLPS and does so under the control of its phosphorylation state. Readily observable, PRD-derived cytoplasmic condensates underwent fusion and fluorescence recovery after photobleaching consistent with the PRD LLPS in vitro. Simulations demonstrated that the charge properties of the PRD predicted phase separation. Tau PRD formed heterotypic condensates with EB1, a regulator of plus-end microtubule dynamic instability. The specific domain properties of the MTBD and PRD serve distinct but mutually complementary roles that use LLPS in a cellular context to implement emergent functionalities that scale their relationship from binding α-beta tubulin heterodimers to the larger proportions of microtubules.

Nucleated transcriptional condensates amplify gene expression.

blue CRY2olig NIH/3T3 Endogenous gene expression Organelle manipulation
Nat Cell Biol, 14 Sep 2020 DOI: 10.1038/s41556-020-00578-6 Link to full text
Abstract: Membraneless organelles or condensates form through liquid-liquid phase separation1-4, which is thought to underlie gene transcription through condensation of the large-scale nucleolus5-7 or in smaller assemblies known as transcriptional condensates8-11. Transcriptional condensates have been hypothesized to phase separate at particular genomic loci and locally promote the biomolecular interactions underlying gene expression. However, there have been few quantitative biophysical tests of this model in living cells, and phase separation has not yet been directly linked with dynamic transcriptional outputs12,13. Here, we apply an optogenetic approach to show that FET-family transcriptional regulators exhibit a strong tendency to phase separate within living cells, a process that can drive localized RNA transcription. We find that TAF15 has a unique charge distribution among the FET family members that enhances its interactions with the C-terminal domain of RNA polymerase II. Nascent C-terminal domain clusters at primed genomic loci lower the energetic barrier for nucleation of TAF15 condensates, which in turn further recruit RNA polymerase II to drive transcriptional output. These results suggest that positive feedback between interacting transcriptional components drives localized phase separation to amplify gene expression.

Optogenetic TDP-43 nucleation induces persistent insoluble species and progressive motor dysfunction in vivo.

blue CRY2olig D. melanogaster in vivo Organelle manipulation
Neurobiol Dis, 11 Sep 2020 DOI: 10.1016/j.nbd.2020.105078 Link to full text
Abstract: TDP-43 is a predominantly nuclear DNA/RNA binding protein that is often mislocalized into insoluble cytoplasmic inclusions in post-mortem patient tissue in a variety of neurodegenerative disorders, most notably, Amyotrophic Lateral Sclerosis (ALS), a fatal and progressive neuromuscular disorder. The underlying causes of TDP-43 proteinopathies remain unclear, but recent studies indicate the formation of these protein assemblies is driven by aberrant phase transitions of RNA deficient TDP-43. Technical limitations have prevented our ability to understand how TDP-43 proteinopathy relates to disease pathogenesis. Current animal models of TDP-43 proteinopathy often rely on overexpression of wild-type TDP-43 to non-physiological levels that may initiate neurotoxicity through nuclear gain of function mechanisms, or by the expression of disease-causing mutations found in only a fraction of ALS patients. New technologies allowing for light-responsive control of subcellular protein crowding provide a promising approach to drive intracellular protein aggregation, as we have previously demonstrated in vitro. Here we present a model for the optogenetic induction of TDP-43 aggregation in Drosophila that recapitulates key biochemical features seen in patient pathology, most notably light-inducible persistent insoluble species and progressive motor dysfunction. These data describe a photokinetic in vivo model that could be as a future platform to identify novel genetic and pharmacological modifiers of diseases associated with TDP-43 neuropathology.

Phosphofructokinase Relocalizes into Subcellular Compartments with Liquid-like Properties In Vivo.

blue CRY2olig C. elegans in vivo Organelle manipulation
Biophys J, 12 Aug 2020 DOI: 10.1016/j.bpj.2020.08.002 Link to full text
Abstract: Although much is known about the biochemical regulation of glycolytic enzymes, less is understood about how they are organized inside cells. We systematically examine the dynamic subcellular localization of glycolytic protein phosphofructokinase-1/PFK-1.1 in Caenorhabditis elegans. We determine that endogenous PFK-1.1 localizes to subcellular compartments in vivo. In neurons, PFK-1.1 forms phase-separated condensates near synapses in response to energy stress from transient hypoxia. Restoring animals to normoxic conditions results in cytosolic dispersion of PFK-1.1. PFK-1.1 condensates exhibit liquid-like properties, including spheroid shapes due to surface tension, fluidity due to deformations, and fast internal molecular rearrangements. Heterologous self-association domain cryptochrome 2 promotes formation of PFK-1.1 condensates and recruitment of aldolase/ALDO-1. PFK-1.1 condensates do not correspond to stress granules and might represent novel metabolic subcompartments. Our studies indicate that glycolytic protein PFK-1.1 can dynamically form condensates in vivo.

m6A-binding YTHDF proteins promote stress granule formation.

blue CRY2olig U-2 OS
Nat Chem Biol, 25 May 2020 DOI: 10.1038/s41589-020-0524-y Link to full text
Abstract: Diverse RNAs and RNA-binding proteins form phase-separated, membraneless granules in cells under stress conditions. However, the role of the prevalent mRNA methylation, m6A, and its binding proteins in stress granule (SG) assembly remain unclear. Here, we show that m6A-modified mRNAs are enriched in SGs, and that m6A-binding YTHDF proteins are critical for SG formation. Depletion of YTHDF1/3 inhibits SG formation and recruitment of mRNAs to SGs. Both the N-terminal intrinsically disordered region and the C-terminal m6A-binding YTH domain of YTHDF proteins are important for SG formation. Super-resolution imaging further reveals that YTHDF proteins appear to be in a super-saturated state, forming clusters that often reside in the periphery of or at the junctions between SG core clusters, and potentially promote SG formation by reducing the activation energy barrier and critical size for SG condensate formation. Our results suggest a new function of the m6A-binding YTHDF proteins in regulating SG formation.

Composition-dependent thermodynamics of intracellular phase separation.

blue CRY2olig HeLa Organelle manipulation
Nature, 6 May 2020 DOI: 10.1038/s41586-020-2256-2 Link to full text
Abstract: Intracellular bodies such as nucleoli, Cajal bodies and various signalling assemblies represent membraneless organelles, or condensates, that form via liquid-liquid phase separation (LLPS)1,2. Biomolecular interactions-particularly homotypic interactions mediated by self-associating intrinsically disordered protein regions-are thought to underlie the thermodynamic driving forces for LLPS, forming condensates that can facilitate the assembly and processing of biochemically active complexes, such as ribosomal subunits within the nucleolus. Simplified model systems3-6 have led to the concept that a single fixed saturation concentration is a defining feature of endogenous LLPS7-9, and has been suggested as a mechanism for intracellular concentration buffering2,7,8,10. However, the assumption of a fixed saturation concentration remains largely untested within living cells, in which the richly multicomponent nature of condensates could complicate this simple picture. Here we show that heterotypic multicomponent interactions dominate endogenous LLPS, and give rise to nucleoli and other condensates that do not exhibit a fixed saturation concentration. As the concentration of individual components is varied, their partition coefficients change in a manner that can be used to determine the thermodynamic free energies that underlie LLPS. We find that heterotypic interactions among protein and RNA components stabilize various archetypal intracellular condensates-including the nucleolus, Cajal bodies, stress granules and P-bodies-implying that the composition of condensates is finely tuned by the thermodynamics of the underlying biomolecular interaction network. In the context of RNA-processing condensates such as the nucleolus, this manifests in the selective exclusion of fully assembled ribonucleoprotein complexes, providing a thermodynamic basis for vectorial ribosomal RNA flux out of the nucleolus. This methodology is conceptually straightforward and readily implemented, and can be broadly used to extract thermodynamic parameters from microscopy images. These approaches pave the way for a deeper understanding of the thermodynamics of multicomponent intracellular phase behaviour and its interplay with the nonequilibrium activity that is characteristic of endogenous condensates.

Nuclear actin regulates inducible transcription by enhancing RNA polymerase II clustering.

blue CRY2olig U-2 OS Organelle manipulation
Sci Adv, 15 Apr 2020 DOI: 10.1126/sciadv.aay6515 Link to full text
Abstract: Gene expression in response to external stimuli underlies a variety of fundamental cellular processes. However, how the transcription machinery is regulated under these scenarios is largely unknown. Here, we discover a novel role of nuclear actin in inducible transcriptional regulation using next-generation transcriptome sequencing and super-resolution microscopy. The RNA-seq data reveal that nuclear actin is required for the establishment of the serum-induced transcriptional program. Using super-resolution imaging, we found a remarkable enhancement of RNA polymerase II (Pol II) clustering upon serum stimulation and this enhancement requires the presence of nuclear actin. To study the molecular mechanisms, we firstly observed that Pol II clusters co-localized with the serum-response genes and nuclear actin polymerized in adjacent to Pol II clusters upon serum stimulation. Furthermore, N-WASP and Arp2/3 are reported to interact with Pol II, and we demonstrated N-WASP is required for serum-enhanced Pol II clustering. Importantly, using an optogenetic tool, we revealed that N-WASP phase-separated with the carboxy-terminal domain of Pol II and nuclear actin. In addition to serum stimulation, we found nuclear actin also essential in enhancing Pol II clustering upon interferon-γ treatment. Taken together, our work unveils nuclear actin promotes the formation of transcription factory on inducible genes, acting as a general mechanism underlying the rapid response to environmental cues.
Submit a new publication to our database