Showing 1 - 25 of 124 results
Not Review
Not Background
1.
Tissue sculpting with light.
Abstract:
While optogenetic tools have recently opened new avenues for controlling and understanding cellular behavior, Suh et al.1 present an effective strategy to regulate tissue densification and outgrowth through optogenetic control of EGFR. Their work ultimately uncovers fundamental principles that pave the way for improved tissue engineering approaches.
2.
TopBP1 biomolecular condensates: a new therapeutic target in advanced-stage colorectal cancer.
-
Morano, L
-
Vezzio-Vié, N
-
Aissanou, A
-
Egger, T
-
Aze, A
-
Fiachetti, S
-
Bordignon, B
-
Hassen-Khodja, C
-
Seitz, H
-
Milazzo, LA
-
Garambois, V
-
Chaloin, L
-
Bonnefoy, N
-
Gongora, C
-
Constantinou, A
-
Basbous, J
Abstract:
In cancer cells, ATR signaling is crucial to tolerate the intrinsically high damage levels that normally block replication fork progression. Assembly of TopBP1, a multifunctional scaffolding protein, into condensates is required to amplify ATR kinase activity to the levels needed to coordinate the DNA damage response and manage DNA replication stress. Many ATR inhibitors are tested for cancer treatment in clinical trials, but their overall effectiveness is oven compromised by the emergence of resistance and toxicities. In this proof-of-concept study, we propose to disrupt the ATR pathway by targeting TopBP1 condensation. First, we screened a molecule-based library using a previously developed optogenetic approach and identified several TopBP1 condensation inhibitors. Amongst them, AZD2858 disrupted TopBP1 assembly induced by the clinically relevant topoisomerase I inhibitor SN-38, thereby inhibiting the ATR/Chk1 signaling pathway. We found that AZD2858 exerted its effects by disrupting TopBP1 self-interaction and binding to ATR in mammalian cells, and by increasing its chromatin recruitment n cell-free Xenopus laevis egg extracts. Moreover, AZD2858 prevented S-phase checkpoint induction by SN-38, leading to increased DNA damage and apoptosis in a colorectal cancer cell line. Lastly, AZD2858 showed synergistic effect in combination with the FOLFIRI chemotherapy regimen in a spheroid model of colorectal cancer.
3.
Anti-resonance in developmental signaling regulates cell fate decisions.
Abstract:
Cells process dynamic signaling inputs to regulate fate decisions during development. While oscillations or waves in key developmental pathways, such as Wnt, have been widely observed the principles governing how cells decode these signals remain unclear. By leveraging optogenetic control of the Wnt signaling pathway in both HEK293T cells and H9 human embryonic stem cells, we systematically map the relationship between signal frequency and downstream pathway activation. We find that cells exhibit a minimal response to Wnt at certain frequencies, a behavior we term anti-resonance. We developed both detailed biochemical and simplified hidden variable models that explain how anti-resonance emerges from the interplay between fast and slow pathway dynamics. Remarkably, we find that frequency directly influences cell fate decisions involved in human gastrulation; signals delivered at anti-resonant frequencies result in dramatically reduced mesoderm differentiation. Our work reveals a previously unknown mechanism of how cells decode dynamic signals and how anti-resonance may filter against spurious activation. These findings establish new insights into how cells decode dynamic signals with implications for tissue engineering, regenerative medicine, and cancer biology.
4.
Optogenetically Activatable MLKL as a Standalone Functional Module for Necroptosis and Therapeutic Applications in Antitumoral Immunity.
-
Jeong, DH
-
Kim, S
-
Park, HH
-
Woo, KJ
-
Choi, JI
-
Choi, M
-
Shin, J
-
Park, SH
-
Seon, MW
-
Lee, D
-
Cha, JH
-
Kim, YS
Abstract:
Necroptosis plays a crucial role in the progression of various diseases and has gained substantial attention for its potential to activate antitumor immunity. However, the complex signaling networks that regulate necroptosis have made it challenging to fully understand its mechanisms and translate this knowledge into therapeutic applications. To address these challenges, an optogenetically activatable necroptosis system is developed that allows for precise spatiotemporal control of key necroptosis regulators, bypassing complex upstream signaling processes. The system, specifically featuring optoMLKL, demonstrates that it can rapidly assemble into functional higher-order "hotspots" within cellular membrane compartments, independent of RIPK3-mediated phosphorylation. Moreover, the functional module of optoMLKL significantly enhances innate immune responses by promoting the release of iDAMPs and cDAMPs, which are critical for initiating antitumor immunity. Furthermore, optoMLKL exhibits antitumor effects when activated in patient-derived pancreatic cancer organoids, highlighting its potential for clinical application. These findings will pave the way for innovative cancer therapies by leveraging optogenetic approaches to precisely control and enhance necroptosis.
5.
Optogenetic control of Protein Kinase C-epsilon activity reveals its intrinsic signaling properties with spatiotemporal resolution.
-
Ong, Q
-
Lim, CJY
-
Liao, Y
-
Tze-Yang Ng, J
-
Lim, LTR
-
Koh, SXY
-
Chan, SE
-
Ying, PLY
-
Lim, H
-
Ye, CR
-
Wang, LC
-
Ler, SG
-
Sobota, RM
-
Tan, YS
-
Shulman, GI
-
Yang, X
-
Han, W
Abstract:
The regulation of PKC epsilon (PKCε) and its downstream effects is still not fully understood, making it challenging to develop targeted therapies or interventions. A more precise tool that enables spatiotemporal control of PKCε activity is thus required. Here, we describe a photo-activatable optogenetic PKCε probe (Opto-PKCε) consisting of an engineered PKCε catalytic domain and a blue-light inducible dimerization domain. Molecular dynamics and AlphaFold simulations enable rationalization of the dark-light activity of the optogenetic probe. We first characterize the binding partners of Opto-PKCε, which are similar to those of PKCε. Subsequent validation of the Opto-PKCε tool is performed with phosphoproteome analysis, which reveals that only PKCε substrates are phosphorylated upon light activation. Opto-PKCε could be engineered for recruitment to specific subcellular locations. Activation of Opto-PKCε in isolated hepatocytes reveals its sustained activation at the plasma membrane is required for its phosphorylation of the insulin receptor at Thr1160. In addition, Opto-PKCε recruitment to the mitochondria results in its lowering of the spare respiratory capacity through phosphorylation of complex I NDUFS4. These results demonstrate that Opto-PKCε may have broad applications for the studies of PKCε signaling with high specificity and spatiotemporal resolution.
6.
CD44 and Ezrin restrict EGF receptor mobility to generate a novel spatial arrangement of cytoskeletal signaling modules driving bleb-based migration.
Abstract:
Cells under high confinement form highly polarized hydrostatic pressure-driven, stable leader blebs that enable efficient migration in low adhesion, environments. Here we investigated the basis of the polarized bleb morphology of metastatic melanoma cells migrating in non-adhesive confinement. Using high-resolution time-lapse imaging and specific molecular perturbations, we found that EGF signaling via PI3K stabilizes and maintains a polarized leader bleb. Protein activity biosensors revealed a unique EGFR/PI3K activity gradient decreasing from rear-to-front, promoting PIP3 and Rac1-GTP accumulation at the bleb rear, with its antagonists PIP2 and RhoA-GTP concentrated at the bleb tip, opposite to the front-to-rear organization of these signaling modules in integrin-mediated mesenchymal migration. Optogenetic experiments showed that disrupting this gradient caused bleb retraction, underscoring the role of this signaling gradient in bleb stability. Mathematical modeling and experiments identified a mechanism where, as the bleb initiates, CD44 and ERM proteins restrict EGFR mobility in a membrane-apposed cortical actin meshwork in the bleb rear, establishing a rear-to-front EGFR-PI3K-Rac activity gradient. Thus, our study reveals the biophysical and molecular underpinnings of cell polarity in bleb-based migration of metastatic cells in non-adhesive confinement, and underscores how alternative spatial arrangements of migration signaling modules can mediate different migration modes according to the local microenvironment.
7.
The CDKL5 kinase undergoes liquid-liquid phase separation driven by a serine-rich C-terminal region and impaired by neurodevelopmental disease-related truncations.
-
Dell'Oca, M
-
Boggio Bozzo, S
-
Vaglietti, S
-
Gurgone, A
-
Cardinale, V
-
Ragazzini, G
-
Alessandrini, A
-
Colnaghi, L
-
Ghirardi, M
-
Giustetto, M
-
Fiumara, F
Abstract:
Mutations of the cyclin-dependent kinase-like 5 (CDKL5) gene, which encodes a serine/threonine protein kinase, can cause the CDKL5 deficiency disorder (CDD), a severe neurodevelopmental disease characterized by epileptic encephalopathy and neurocognitive impairment. The CDKL5 kinase consists of a catalytic N-terminal domain (NTD) and a less characterized C-terminal domain (CTD). Numerous disease-related mutations truncate CDKL5, leaving the NTD intact while variably shortening the CTD, which highlights the importance of the CTD for CDKL5 function. By systematically analyzing CDKL5 compositional features and evolutionary dynamics, we found that the CTD is a low-complexity region (LCR) highly enriched in serine residues and with a high propensity to undergo liquid-liquid phase separation (LLPS), a biophysical process of condensation controlling protein localization and function. Using a combination of super-resolution imaging, electron microscopy, and molecular and cellular approaches, including optogenetic LLPS induction, we discovered that CDKL5 undergoes LLPS, predominantly driven by its CTD, forming membraneless condensates in neuronal and non-neuronal cells. A CTD internal fragment (CTIF) plays a pivotal LLPS-promoting role, along with the distal portion of the protein. Indeed, two disease-related truncating mutations (S726X and R781X), eliding variable portions of the CTIF, significantly impair LLPS. This impairment is paralleled at the functional level by a reduction in the CDKL5-dependent phosphorylation of EB2, a known CDKL5 target. These findings demonstrate that CDKL5 undergoes LLPS, driven by a CTD region elided by most disease-related truncating mutations. Its loss––through the impairment of CDKL5 LLPS and functional activity––may play a key role in the molecular pathogenesis of CDD.
8.
Spatiotemporal control of subcellular O-GlcNAc signaling using Opto-OGT.
-
Ong, Q
-
Lim, LTR
-
Goh, C
-
Liao, Y
-
Chan, SE
-
Lim, CJY
-
Kam, V
-
Yap, J
-
Tseng, T
-
Desrouleaux, R
-
Wang, LC
-
Ler, SG
-
Lim, SL
-
Kim, SY
-
Sobota, RM
-
Bennett, AM
-
Han, W
-
Yang, X
Abstract:
The post-translational modification of intracellular proteins through O-linked β-N-acetylglucosamine (O-GlcNAc) is a conserved regulatory mechanism in multicellular organisms. Catalyzed by O-GlcNAc transferase (OGT), this dynamic modification has an essential role in signal transduction, gene expression, organelle function and systemic physiology. Here, we present Opto-OGT, an optogenetic probe that allows for precise spatiotemporal control of OGT activity through light stimulation. By fusing a photosensitive cryptochrome protein to OGT, Opto-OGT can be robustly and reversibly activated with high temporal resolution by blue light and exhibits minimal background activity without illumination. Transient activation of Opto-OGT results in mTORC activation and AMPK suppression, which recapitulate nutrient-sensing signaling. Furthermore, Opto-OGT can be customized to localize to specific subcellular sites. By targeting OGT to the plasma membrane, we demonstrate the downregulation of site-specific AKT phosphorylation and signaling outputs in response to insulin stimulation. Thus, Opto-OGT is a powerful tool for defining the role of O-GlcNAcylation in cell signaling and physiology.
9.
Dysfunctional RNA binding protein induced neurodegeneration is attenuated by inhibition of the integrated stress response.
Abstract:
Dysfunction of the RNA binding protein heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) contributes to neurodegeneration, the primary cause of permanent disability in multiple sclerosis (MS). To better understand the role of hnRNP A1 dysfunction in the pathogenesis of neurodegeneration, we utilized optogenetics-driven hnRNP A1 clustering to model its dysfunction in neuron-like differentiated Neuro-2A cells. hnRNP A1 clustering activates the integrated stress response (ISR) and results in a neurodegenerative phenotype marked by decreased neuronal protein translation and neurite loss. Small molecule inhibition of the ISR with either PERKi (GSK2606414) or ISRIB (integrated stress response inhibitor) attenuated both the decrease in neuronal translation and neurite loss, without affecting hnRNP A1 clustering. We then confirmed a strong association between hnRNP A1 clustering and ISR activation in neurons from MS brains. These data illustrate that hnRNP A1 dysfunction promotes neurodegeneration by activation of the ISR in vitro and in vivo, thus revealing a novel therapeutic target to reduce neurodegeneration and subsequent disability in MS.
10.
CELF2 promotes tau exon 10 inclusion via hinge domain-mediated nuclear condensation.
Abstract:
Alternative splicing is a fundamental process that contributes to the functional diversity and complexity of proteins. The regulation of each alternative splicing event involves the coordinated action of multiple RNA-binding proteins, creating a diverse array of alternatively spliced products. Dysregulation of alternative splicing is associated with various diseases, including neurodegeneration. Here we demonstrate that CELF2, a splicing regulator and a GWAS-identified risk factor for Alzheimer’s disease, binds to mRNAs associated with neurodegenerative diseases, with a specific interaction observed in the intron adjacent to exon 10 on Tau mRNA. Loss of CELF2 in the mouse brain results in a decreased inclusion of Tau exon 10, leading to a reduced 4R:3R ratio. Further exploration shows that the hinge domain of CELF2 possesses an intrinsically disordered region (IDR), which mediates CELF2 condensation and function. The functionality of IDR in regulating CELF2 function is underscored by its substitutability with IDRs from FUS and TAF15. Using TurboID we identified proteins that interact with CELF2 through its IDR. We revealed that CELF2 co-condensate with NOVA2 and SFPQ, which coordinate with CELF2 to regulate the alternative splicing of Tau exon 10. A negatively charged residue within the IDR (D388), which is conserved among CELF proteins, is critical for CELF2 condensate formation, interactions with NOVA2 and SFPQ, and function in regulating tau exon 10 splicing. Our data allow us to propose that CELF2 regulates Tau alternative splicing by forming condensates through its IDR with other splicing factors, and that the composition of the proteins within the condensates determines the outcomes of alternative splicing events.
11.
Single cells can resolve graded stimuli.
Abstract:
Cells use signalling pathways as windows into the environment to gather information, transduce it into their interior, and use it to drive behaviours. MAPK (ERK) is a highly conserved signalling pathway in eukaryotes, directing multiple fundamental cellular behaviours such as proliferation, migration, and differentiation, making it of few central hubs in the signalling circuitry of cells. Despite this versatility of behaviors, population-level measurements have reported low information content (< 1 bit) relayed through the ERK pathway, rendering the population barely able to distinguish the presence or absence of stimuli. Here, we contrast the information transmitted by a single cell and a population of cells. Using a combination of optogenetic experiments, data analysis based on information theory framework, and numerical simulations we quantify the amount of information transduced from the receptor to ERK, from responses to singular, brief and sparse input pulses. We show that single cells are indeed able to resolve between graded stimuli, yielding over 2 bit of information, however showing a large population heterogeneity
12.
The G3BP Stress-Granule Proteins Reinforce the Translation Program of the Integrated Stress Response.
Abstract:
When mammalian cells are exposed to extracellular stress, they coordinate the condensation of stress granules (SGs) through the action of key nucleating proteins G3BP1 and G3BP2 (G3BPs) and, simultaneously, undergo a massive reduction in translation.1-5 Although SGs and G3BPs have been linked to this translation response, their overall impact has been unclear. Here, we investigate the longstanding question of how, and indeed whether, G3BPs and SGs shape the stress translation response. We find that SGs are enriched for mRNAs that are resistant to the stress-induced translation shutdown. Although the accurate recruitment of these stress-resistant mRNAs does require the context of stress, a combination of optogenetic tools and spike-normalized ribosome profiling demonstrates that G3BPs and SGs are necessary and sufficient to both help prioritize the translation of their enriched mRNAs and help suppress cytosolic translation. Together these results support a model in which G3BPs and SGs reinforce the stress translation program by prioritizing the translation of their resident mRNAs.
13.
Catalytic-dependent and independent functions of the histone acetyltransferase CBP promote pioneer factor-mediated zygotic genome activation.
Abstract:
Immediately after fertilization the genome is transcriptionally quiescent. Maternally encoded pioneer transcription factors reprogram the chromatin state and facilitate the transcription of the zygotic genome. In Drosophila, transcription is initiated by the pioneer factor Zelda. While Zelda-occupied sites are enriched with histone acetylation, a post-translational mark associated with active cis-regulatory regions, the functional relationship between Zelda and histone acetylation in zygotic genome activation remained unclear. We show that Zelda-mediated recruitment of the histone acetyltransferase CBP is essential for zygotic transcription. CBP catalytic activity is necessary for release of RNA Polymerase II (Pol II) into transcription elongation and for embryonic development. However, CBP also activates zygotic transcription independent of acetylation through Pol II recruitment. Neither acetylation nor CBP are required for the pioneering function of Zelda. Our data suggest that pioneer factor-mediated recruitment of CBP is a conserved mechanism required to activate zygotic transcription but that this role is separable from the function of pioneer factors in restructuring chromatin accessibility.
14.
C9orf72 poly-PR forms anisotropic condensates causative of nuclear TDP-43 pathology.
Abstract:
Proteinaceous inclusions formed by C9orf72-derived dipeptide-repeat (DPR) proteins are a histopathological hallmark in ∼50% of familial amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD) cases. However, DPR aggregation/inclusion formation could not be efficiently recapitulated in cell models for four out of five DPRs. In this study, using optogenetics, we achieved chemical-free poly-PR condensation/aggregation in cultured cells including human motor neurons, with spatial and temporal control. Strikingly, nuclear poly-PR condensates had anisotropic, hollow-center appearance, resembling TDP-43 anisosomes, and their growth was limited by RNA. These condensates induced abnormal TDP-43 granulation in the nucleus without stress response activation. Cytoplasmic poly-PR aggregates forming under prolonged opto-stimulation were more persistent than its nuclear condensates, selectively sequestered TDP-43 in a demixed state and surrounded spontaneous stress granules. Thus, poly-PR condensation accompanied by nuclear TDP-43 dysfunction may constitute an early pathological event in C9-ALS/FTD. Anisosome-type condensates of disease-linked proteins may represent a common molecular species in neurodegenerative disease.
15.
TPM4 condensates glycolytic enzymes to fuel actin reorganization under hyperosmotic stress.
Abstract:
Actin homeostasis is fundamental for cell structure and consumes a large portion of cellular ATP. It has been documented in the literature that certain glycolytic enzymes can interact with actin, indicating an intricate interplay between the cytoskeleton and cellular metabolism. Here we report that hyperosmotic stress triggers actin severing and subsequent phase separation of the actin-binding protein TPM4. TPM4 condensates glycolytic enzymes such as HK2, PFKM, and PKM2, and adhere to and wrap around actin filaments. Notably, the condensates of TPM4 and glycolytic enzymes are enriched of NADH and ATP, suggestive of their functional importance in cell metabolism. At cellular level, actin filaments assembly is enhanced upon hyperosmotic stress and TPM4 condensation, while depletion of TPM4 impaired osmolarity-induced actin reorganization. At tissue level, co-localized condensates of TPM4 and glycolytic enzymes are observed in renal tissues subjected to hyperosmotic stress. Together, our findings suggest that stress-induced actin perturbation may act on TPM4 to organize glycolytic hubs that tether energy production to cytoskeletal reorganization.
16.
Activation of NF-κB signaling by optogenetic clustering of IKKα and β.
Abstract:
A large percentage of proteins form higher-order structures in order to fulfill their function. These structures are crucial for the precise spatial and temporal regulation of the cellular signaling network. Investigation of this network requires sophisticated research tools, such as optogenetic tools, that allow dynamic control over the signaling molecules. Cryptochrome 2 and its variations are the best-characterized oligomerizing photoreceptors the optogenetics toolbox has to offer. Therefore, we utilized this switch and combined it with an eGFP-binding nanobody, to build a toolbox of optogenetic constructs that enables the oligomerization of any eGFP-tagged protein of interest. We further introduced the higher clustering variant Cry2olig and an intrinsically disordered region to create higher-order oligomers or phase-separated assemblies to investigate the impact of different oligomerization states on eGFP-tagged signaling molecules. We apply these constructs to cluster IKKα and IKKβ, which resemble the central signaling integrator of the NF-κB pathway, thereby engineer a potent, blue-light-inducible activator of NF-κB signaling.
17.
Large-scale control over collective cell migration using light-controlled epidermal growth factor receptors.
Abstract:
Receptor tyrosine kinases (RTKs) are thought to play key roles in coordinating cell movement at single-cell and tissue scales. The recent development of optogenetic tools for controlling RTKs and their downstream signaling pathways suggested these responses may be amenable to engineering-based control for sculpting tissue shape and function. Here, we report that a light-controlled EGF receptor (OptoEGFR) can be deployed in epithelial cell lines for precise, programmable control of long-range tissue movements. We show that in OptoEGFR-expressing tissues, light can drive millimeter-scale cell rearrangements to densify interior regions or produce rapid outgrowth at tissue edges. Light-controlled tissue movements are driven primarily by PI 3-kinase signaling, rather than diffusible signals, tissue contractility, or ERK kinase signaling as seen in other RTK-driven migration contexts. Our study suggests that synthetic, light-controlled RTKs could serve as a powerful platform for controlling cell positions and densities for diverse applications including wound healing and tissue morphogenesis.
18.
Spatiotemporal Control of Inflammatory Lytic Cell Death Through Optogenetic Induction of RIPK3 Oligomerization.
Abstract:
Necroptosis is a programmed lytic cell death involving active cytokine production and plasma membrane rupture through distinct signaling cascades. However, it remains challenging to delineate this inflammatory cell death pathway at specific signaling nodes with spatiotemporal accuracy. To address this challenge, we developed an optogenetic system, termed Light-activatable Receptor-Interacting Protein Kinase 3 or La-RIPK3, to enable ligand-free, optical induction of RIPK3 oligomerization. La-RIPK3 activation dissects RIPK3-centric lytic cell death through the induction of RIPK3-containing necrosome, which mediates cytokine production and plasma membrane rupture. Bulk RNA-Seq analysis reveals that RIPK3 oligomerization results in partially overlapped gene expression compared to pharmacological induction of necroptosis. Additionally, La-RIPK3 activates separated groups of genes regulated by RIPK3 kinase-dependent and -independent processes. Using patterned light stimulation delivered by a spatial light modulator, we demonstrate precise spatiotemporal control of necroptosis in La-RIPK3-transduced HT-29 cells. Optogenetic control of proinflammatory lytic cell death could lead to the development of innovative experimental strategies to finetune the immune landscape for disease intervention.
19.
Ubiquitin-driven protein condensation initiates clathrin-mediated endocytosis.
-
Yuan, F
-
Gollapudi, S
-
Day, KJ
-
Ashby, G
-
Sangani, A
-
Malady, BT
-
Wang, L
-
Lafer, EM
-
Huibregtse, JM
-
Stachowiak, JC
Abstract:
Clathrin-mediated endocytosis is an essential cellular pathway that enables signaling and recycling of transmembrane proteins and lipids. During endocytosis, dozens of cytosolic proteins come together at the plasma membrane, assembling into a highly interconnected network that drives endocytic vesicle biogenesis. Recently, multiple groups have reported that early endocytic proteins form flexible condensates, which provide a platform for efficient assembly of endocytic vesicles. Given the importance of this network in the dynamics of endocytosis, how might cells regulate its stability? Many receptors and endocytic proteins are ubiquitylated, while early endocytic proteins such as Eps15 contain ubiquitin-interacting motifs. Therefore, we examined the influence of ubiquitin on the stability of the early endocytic protein network. In vitro, we found that recruitment of small amounts of polyubiquitin dramatically increased the stability of Eps15 condensates, suggesting that ubiquitylation could nucleate endocytic assemblies. In live cell imaging experiments, a version of Eps15 that lacked the ubiquitin-interacting motif failed to rescue defects in endocytic initiation created by Eps15 knockout. Furthermore, fusion of Eps15 to a deubiquitylase enzyme destabilized nascent endocytic sites within minutes. In both in vitro and live cell settings, dynamic exchange of Eps15 proteins, a hallmark of liquid like systems, was modulated by Eps15-Ub interactions. These results collectively suggest that ubiquitylation drives assembly of the flexible protein network responsible for catalyzing endocytic events. More broadly, this work illustrates a biophysical mechanism by which ubiquitylated transmembrane proteins at the plasma membrane could regulate the efficiency of endocytic recycling.
20.
Chromatin condensates tune nuclear mechano-sensing in Kabuki Syndrome by constraining cGAS activation.
-
D’Annunzio, S
-
Santomaso, L
-
Michelatti, D
-
Bernardis, C
-
Vitali, G
-
Lago, S
-
Testi, C
-
Pontecorvo, E
-
Poli, A
-
Pennacchio, F
-
Maiuri, P
-
Sanchez, E
-
Genevieve, D
-
Petrolli, L
-
Tarenzi, T
-
Menichetti, R
-
Potestio, R
-
Ruocco, G
-
Zippo, A
Abstract:
Cells and tissue integrity is constantly challenged by the necessity to adapt and respond to mechanical loads. Among the cellular components, the nucleus possesses mechano-sensing and mechanotransduction capabilities, yet the molecular mechanisms involved remain poorly defined. We postulated that the mechanical properties of the chromatin and its compartmentalization into condensates contribute to the nuclear adaptation to external forces, while preserving its integrity. By interrogating the effects of MLL4 loss-of-function in Kabuki Syndrome, we found that the balancing of transcriptional and Polycomb condensates tunes the nuclear responsiveness to external mechanical forces. We showed that MLL4 acts as a chromatin mechano-sensor by clustering into condensates through its Prion-like domain, and its response was regulated by the chromatin context. Furthermore, the mechano-sensing activity of MLL4 condensates is instrumental to withstand the physical challenges that nuclei experience during cell confinement and migration by preserving their integrity. In Kabuki Syndrome persistent rupture of nuclear envelope triggers cGAS-STING activation, which leads to programmed cell death. Ultimately, these results demonstrate the critical role chromatin compartments play in mechano-responses and how they impact pathological conditions by stimulating cGAS-STING signaling.
21.
Optogenetically controlled inflammasome activation demonstrates two phases of cell swelling during pyroptosis.
-
Nadjar, J
-
Monnier, S
-
Bastien, E
-
Huber, AL
-
Oddou, C
-
Bardoulet, L
-
Leloup, HB
-
Ichim, G
-
Vanbelle, C
-
Py, BF
-
Destaing, O
-
Petrilli, V
Abstract:
Inflammasomes are multiprotein platforms that control caspase-1 activation, which process the inactive precursor forms of the inflammatory cytokines IL-1β and IL-18, leading to an inflammatory type of programmed cell death called pyroptosis. Studying inflammasome-driven processes, such as pyroptosis-induced cell swelling, under controlled conditions remains challenging because the signals that activate pyroptosis also stimulate other signaling pathways. We designed an optogenetic approach using a photo-oligomerizable inflammasome core adapter protein, apoptosis-associated speck-like containing a caspase recruitment domain (ASC), to temporally and quantitatively manipulate inflammasome activation. We demonstrated that inducing the light-sensitive oligomerization of ASC was sufficient to recapitulate the classical features of inflammasomes within minutes. This system showed that there were two phases of cell swelling during pyroptosis. This approach offers avenues for biophysical investigations into the intricate nature of cellular volume control and plasma membrane rupture during cell death.
22.
Focal adhesion-derived liquid-liquid phase separations regulate mRNA translation.
Abstract:
Liquid-liquid phase separation (LLPS) has emerged as a major organizing principle in cells. Recent work showed that multiple components of integrin-mediated focal adhesions including p130Cas can form LLPS, which govern adhesion dynamics and related cell behaviors. In this study, we found that the focal adhesion protein p130Cas drives formation of structures with the characteristics of LLPS that bud from focal adhesions into the cytoplasm. Condensing concentrated cytoplasm around p130Cas-coated beads allowed their isolation, which were enriched in a subset of focal adhesion proteins, mRNAs and RNA binding proteins, including those implicated in inhibiting mRNA translation. Plating cells on very high concentrations of fibronectin to induce large focal adhesions inhibited message translation which required p130Cas and correlated with droplet formation. Photo-induction of p130Cas condensates using the Cry2 system also reduced translation. These results identify a novel regulatory mechanism in which high adhesion limits message translation via induction of p130Cas-dependent cytoplasmic LLPS. This mechanism may contribute to the quiescent state of very strongly adhesive myofibroblasts and senescent cells.
23.
Optogenetic control of mRNA condensation reveals an intimate link between condensate material properties and functions.
Abstract:
Biomolecular condensates, often assembled through phase transition mechanisms, play key roles in organizing diverse cellular activities. The material properties of condensates, ranging from liquid droplets to solid-like glasses or gels, are key features impacting the way resident components associate with one another. However, it remains unclear whether and how different material properties would influence specific cellular functions of condensates. Here, we combine optogenetic control of phase separation with single-molecule mRNA imaging to study relations between phase behaviors and functional performance of condensates. Using light-activated condensation, we show that sequestering target mRNAs into condensates causes translation inhibition. Orthogonal mRNA imaging reveals highly transient nature of interactions between individual mRNAs and condensates. Tuning condensate composition and material property towards more solid-like states leads to stronger translational repression, concomitant with a decrease in molecular mobility. We further demonstrate that β-actin mRNA sequestration in neurons suppresses spine enlargement during chemically induced long-term potentiation. Our work highlights how the material properties of condensates can modulate functions, a mechanism that may play a role in fine-tuning the output of condensate-driven cellular activities.
24.
Spatial organization and functions of Chk1 activation by TopBP1 biomolecular condensates.
Abstract:
Assembly of TopBP1 biomolecular condensates triggers activation of the ataxia telangiectasia-mutated and Rad3-related (ATR)/Chk1 signaling pathway, which coordinates cell responses to impaired DNA replication. Here, we used optogenetics and reverse genetics to investigate the role of sequence-specific motifs in the formation and functions of TopBP1 condensates. We propose that BACH1/FANCJ is involved in the partitioning of BRCA1 within TopBP1 compartments. We show that Chk1 is activated at the interface of TopBP1 condensates and provide evidence that these structures arise at sites of DNA damage and in primary human fibroblasts. Chk1 phosphorylation depends on the integrity of a conserved arginine motif within TopBP1's ATR activation domain (AAD). Its mutation uncouples Chk1 activation from TopBP1 condensation, revealing that optogenetically induced Chk1 phosphorylation triggers cell cycle checkpoints and slows down replication forks in the absence of DNA damage. Together with previous work, these data suggest that the intrinsically disordered AAD encodes distinct molecular steps in the ATR/Chk1 pathway.
25.
Engineering Material Properties of Transcription Factor Condensates to Control Gene Expression in Mammalian Cells and Mice.
-
Fischer, AAM
-
Robertson, HB
-
Kong, D
-
Grimm, MM
-
Grether, J
-
Groth, J
-
Baltes, C
-
Fliegauf, M
-
Lautenschläger, F
-
Grimbacher, B
-
Ye, H
-
Helms, V
-
Weber, W
Abstract:
Phase separation of biomolecules into condensates is a key mechanism in the spatiotemporal organization of biochemical processes in cells. However, the impact of the material properties of biomolecular condensates on important processes, such as the control of gene expression, remains largely elusive. Here, the material properties of optogenetically induced transcription factor condensates are systematically tuned, and probed for their impact on the activation of target promoters. It is demonstrated that transcription factors in rather liquid condensates correlate with increased gene expression levels, whereas stiffer transcription factor condensates correlate with the opposite effect, reduced activation of gene expression. The broad nature of these findings is demonstrated in mammalian cells and mice, as well as by using different synthetic and natural transcription factors. These effects are observed for both transgenic and cell-endogenous promoters. The findings provide a novel materials-based layer in the control of gene expression, which opens novel opportunities in optogenetic engineering and synthetic biology.