Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Qr: switch:"iLID"
Showing 1 - 25 of 149 results
Not Review Not Background
1.

CrisprBuildr: an open-source application for CRISPR-mediated genome engineering in Drosophila melanogaster.

blue iLID D. melanogaster in vivo Nucleic acid editing
G3 (Bethesda), 7 Jan 2026 DOI: 10.1093/g3journal/jkaf251 Link to full text
Abstract: CRISPR/Cas9 is a powerful tool for targeted genome editing experiments. Using CRISPR/Cas9, genes can be deleted or modified by inserting specific DNA sequences, encoding for fluorescent proteins, small peptide tags, or other modifications. Such experiments are essential for detailed gene and protein characterization. However, designing and cloning the corresponding constructs can be repetitive, time-consuming, and laborious. To assist users in CRISPR/Cas9-based genome engineering, we developed CrisprBuildr, an open-source, web-based application for designing modifications to their target genes. CrisprBuildr guides users through creating guide RNAs and repair template vectors to generate cloning maps. The application is designed for the Drosophila melanogaster genome but can serve as a template for other available genomes. We also created new tagging vectors using EGFP and mCherry combined with the small peptide SspB-Q73R for use in iLID-based optogenetic experiments.
2.

Optogenetic control of biomolecular organization reveals distinct roles of phase separation in RTK signaling.

blue CRY2/CRY2 iLID Magnets TULIP A549 HEK293T HeLa U-2 OS Signaling cascade control Organelle manipulation
Cell Chem Biol, 1 Dec 2025 DOI: 10.1016/j.chembiol.2025.11.001 Link to full text
Abstract: Multimerization and phase separation represent two paradigms for organizing receptor tyrosine kinases (RTKs). However, their functional distinctions from the perspective of biomolecular organization remain unclear. Here, we present CORdensate, a light-controllable condensation system combining two synergistic photoactuators: oligomeric Cry2 and heterodimeric LOVpep/ePDZ. Engineering single-chain photoswitches, we achieve four biomolecular organization patterns ranging from monomerization to phase separation. CORdensate exhibits constant assembly and disassembly kinetics. Applying CORdensate to mimic pathogenic RTK granules establishes the role of phase separation in activating ALK and RET. Moreover, assembling ALK and RET through varying organization patterns, we highlight the superior organizational ability of phase separation over multimerization. Additionally, CORdensate-based RTK granules suggest that phase separation broadly and robustly activates RTKs. This study introduces a optogenetic tool for investigating biomolecular condensation.
3.

A Modular Platform for the Optogenetic Control of Small GTPase Activity in Living Cells Reveals Long-Range RhoA Signaling.

blue iLID HeLa MEF-1 Signaling cascade control Control of cytoskeleton / cell motility / cell shape
bioRxiv, 27 Oct 2025 DOI: 10.1101/2025.09.07.674731 Link to full text
Abstract: Small GTPases are critical regulators of cellular processes, such as cell migration, and comprise a family of over 167 proteins in the human genome. Importantly, the location-dependent regulation of small GTPase activity is integral to coordinating cellular signaling. Currently, there are no generalizable methods for directly controlling the activity of these signaling enzymes with subcellular precision. To address this issue, we introduce a modular, optogenetic platform for the spatial control of small GTPase activity within living cells, termed spLIT-small GTPases. This platform enabled spatially precise control of cytoskeletal dynamics such as filopodia formation (spLIT-Cdc42) and directed cell migration (spLIT-Rac1). Furthermore, a spLIT-RhoA system uncovered previously unreported long-range RhoA signaling in HeLa cells, resulting in bipolar membrane retraction. These results establish spLIT-small GTPases as a versatile platform for the direct, spatial control of small GTPase signaling and demonstrate the ability to uncover spatially defined aspects of small GTPase signaling.
4.

Optogenetic control of PLC-γ1 activity polarizes cell motility.

blue iLID isolated MEFs Signaling cascade control Control of cytoskeleton / cell motility / cell shape
bioRxiv, 11 Oct 2025 DOI: 10.1101/2025.10.09.681531 Link to full text
Abstract: Phospholipase C-γ1 (PLC-γ1) signaling is required for mesenchymal chemotaxis, but is it sufficient to bias motility? PLC-γ1 enzyme activity is basally autoinhibited, and light-controlled membrane recruitment of wild-type (WT) PLC-γ1 (OptoPLC-γ1) in Plcg1-null fibroblasts does not trigger lipid hydrolysis, complicating efforts to isolate its contribution. Utilizing cancer-associated mutations to investigate the regulatory logic of PLC-γ1, we demonstrate that the canonical hallmark of enzyme activity, phosphorylated Tyr783 (pTyr783), is not a proxy for activity level, but is rather a marker of dysregulated autoinhibition. Accordingly, OptoPLC-γ1 with a deregulating mutation (P867R, S345F, or D1165H) exhibits elevated phosphorylation, and membrane localization of such is sufficient to activate substrate hydrolysis and concomitant motility responses. In particular, local recruitment of OptoPLC-γ1 S345F polarizes cell motility on demand. This response is spatially dose-sensitive and only partially reduced by blocking canonical PLC-γ1 signaling yet is lipase-dependent. Our findings reframe the interpretation of PLC-γ1 regulation and demonstrate that local activation of PLC-γ1 is sufficient to direct cell motility.
5.

Optogenetic actin network assembly on lipid bilayer uncovers the network density-dependent functions of actin-binding proteins.

blue iLID in vitro MDCK Control of cytoskeleton / cell motility / cell shape
Nat Commun, 26 Aug 2025 DOI: 10.1038/s41467-025-62653-6 Link to full text
Abstract: The actin cytoskeleton forms a meshwork that drives cellular deformation. Network properties, determined by density and actin-binding proteins, are crucial, yet how density governs protein penetration and dynamics remains unclear. Here, we report an in vitro optogenetic system, named OptoVCA, enabling Arp2/3 complex-mediated actin assembly on lipid membranes. By tuning illumination power, duration, and pattern, OptoVCA flexibly manipulates the density, thickness, and shape of the actin network. Taking these advantages, we examine how network density affects two actin-binding proteins: myosin and ADF/cofilin. We find that even modest increases in density strictly inhibit myosin filament penetration by steric hindrance. Penetrated myosin filaments generate directional actin flow in networks with density gradients. In contrast, ADF/cofilin accesses networks regardless of density, yet network disassembly is markedly reduced by increased density. Thus, OptoVCA reveals that network density differentially regulates actin-binding protein penetration and activity. These findings advance understanding of cell mechanics through precise, light-based manipulation of cytoskeletal structure.
6.

Endogenous OptoRhoGEFs reveal biophysical principles of epithelial tissue furrowing.

blue CRY2/CIB1 iLID D. melanogaster in vivo Signaling cascade control Developmental processes
Nat Commun, 18 Aug 2025 DOI: 10.1038/s41467-025-62483-6 Link to full text
Abstract: During development, epithelia function as malleable sheets that undergo extensive remodeling to shape developing embryos. Optogenetic control of Rho signaling provides an avenue to investigate mechanisms of epithelial morphogenesis, but transgenic optogenetic tools can be limited by variability in expression levels and deleterious effects of transgenic overexpression on development. Here, we use CRISPR/Cas9 to tag Drosophila RhoGEF2 and Cysts/Dp114RhoGEF with components of the iLID/SspB optogenetic heterodimer, permitting light-dependent control over endogenous protein activities. Using quantitative optogenetic perturbations, we uncover a dose-dependence of tissue furrow depth and bending behavior on RhoGEF recruitment, revealing mechanisms by which developing embryos can shape tissues into particular morphologies. We show that at the onset of gastrulation, furrows formed by cell lateral contraction are oriented and size-constrained by basal actomyosin. Our findings demonstrate the use of quantitative, 3D-patterned perturbations of cell contractility to precisely shape tissue structures and interrogate developmental mechanics.
7.

Ras-mediated dynamic and biphasic regulation of cell migration.

blue iLID D. discoideum Signaling cascade control Control of cytoskeleton / cell motility / cell shape
Proc Natl Acad Sci U S A, 22 Jul 2025 DOI: 10.1073/pnas.2503847122 Link to full text
Abstract: Ras has traditionally been regarded as a positive regulator and therapeutic target due to its role in cell proliferation, but recent findings indicate a more nuanced role in cell migration, where suppressed Ras activity can unexpectedly promote migration. To clarify this complexity, we systematically modulate Ras activity using various RasGEF and RasGAP proteins and assess their effects on migration dynamics. Leveraging optogenetics, we assess the immediate, nontranscriptional effects of Ras signaling on migration. Local RasGEF recruitment to the plasma membrane induces protrusions and new fronts to effectively guide migration, even in the absence of GPCR/G-protein signaling, whereas global recruitment causes immediate cell spreading halting cell migration. Local RasGAP recruitment suppresses protrusions, generates new backs, and repels cells, whereas global relocation either eliminates all protrusions to inhibit migration or preserves a single protrusion to maintain polarity. Consistent local and global increases or decreases in signal transduction and cytoskeletal activities accompany these morphological changes. Additionally, we performed cortical tension measurements and found that Ras activity is regulated by guanine nucleotide exchange factors generally increase cortical tension while Ras activity is regulated by GTPase-activating proteins decrease it. Our results reveal a biphasic relationship between Ras activity and cellular dynamics, reinforcing our previous findings that optimal Ras activity and cortical tension are critical for efficient migration.
8.

Optogenetic and chemical genetic tools for rapid repositioning of vimentin intermediate filaments.

blue iLID U-2 OS Control of cytoskeleton / cell motility / cell shape
J Cell Biol, 8 Jul 2025 DOI: 10.1083/jcb.202504004 Link to full text
Abstract: Intermediate filaments (IFs) are a key component of the cytoskeleton, essential for regulating cell mechanics, maintaining nuclear integrity, organelle positioning, and modulating cell signaling. Current insights into IF function primarily come from studies using long-term perturbations, such as protein depletion or mutation. Here, we present tools that allow rapid manipulation of vimentin IFs in the whole cytoplasm or within specific subcellular regions by inducibly coupling them to microtubule motors, either pharmacologically or using light. Rapid perinuclear clustering of vimentin had no major immediate effects on the actin or microtubule organization, cell spreading, or focal adhesion number, but it reduced cell stiffness. Mitochondria and endoplasmic reticulum (ER) sheets were reorganized due to vimentin clustering, whereas lysosomes were only briefly displaced and rapidly regained their normal distribution. Keratin moved along with vimentin in some cell lines but remained intact in others. Our tools help to study the immediate and local effects of vimentin perturbation and identify direct links of vimentin to other cellular structures.
9.

Dynamin-like Proteins Combine Mechano-constriction and Membrane Remodeling to Enable Two-Step Mitochondrial Fission via a "Snap-through" Instability.

blue iLID Cos-7 Organelle manipulation
J Am Chem Soc, 8 Jul 2025 DOI: 10.1021/jacs.5c06352 Link to full text
Abstract: Mitochondrial fission is controlled by dynamin-like proteins, the dysregulation of which is correlated with diverse diseases. Fission dynamin-like proteins are GTP hydrolysis-driven mechanoenzymes that self-oligomerize into helical structures that constrict membranes to achieve fission while also remodeling membranes by inducing negative Gaussian curvature, which is essential for the completion of fission. Despite advances in optical and electron imaging technologies, the underlying mechanics of mitochondrial fission remain unclear due to the multiple times involved in the dynamics of mechanoenzyme activity, oligomer disassembly, and membrane remodeling. Here, we examine how multiscale phenomena in dynamin Drp1 synergistically influence membrane fission using a mechanical model calibrated with small-angle X-ray scattering structural data and informed by a machine learning analysis of the Drp1 sequence, and tested the concept using optogenetic mechanostimulation of mitochondria in live cells. We find that free dynamin-like proteins can trigger a "snap-through instability" that enforces a shape transition from an oligomer-confined cylindrical membrane to a drastically narrower catenoid-shaped neck within the spontaneous hemi-fission regime, in a manner that depends critically on the length of the confined tube. These results indicate how the combination of assembly and paradoxically disassembly of dynamin-like proteins can lead to diverse pathways to scission.
10.

RhoA activation promotes ordered membrane domain coalescence and suppresses neuronal excitability.

blue iLID tsA201 Signaling cascade control Control of cytoskeleton / cell motility / cell shape
bioRxiv, 19 Jun 2025 DOI: 10.1101/2025.06.18.658998 Link to full text
Abstract: This study explores how the small GTPase RhoA modulates plasma membrane lipid nanodomains, particularly cholesterol-rich ordered membrane domains (OMDs). These nanodomains play a critical role in regulating ion channel activity and neuronal excitability. However, due to their nanoscale dimensions, OMDs remain challenging to visualize using conventional light microscopy. Here, we used fluorescently labeled cholera toxin B (CTxB) and the palmitoylated peptide Lck-10 (L10) as probes to visualize OMDs and quantified their size via confocal fluorescence lifetime imaging microscopy (FLIM)-based Förster resonance energy transfer (FRET). Pharmacological inhibition of RhoA significantly reduced OMD sizes in both human cell lines and dorsal root ganglion (DRG) neurons. To achieve better spatiotemporal control of specific RhoA activation, we employed an improved light-inducible dimerization (iLID) system. Optogenetic activation of RhoA rapidly increased FRET efficiency between CTxB probes, indicating OMD coalescence. Functionally, RhoA inhibition potentiated hyperpolarization-activated cyclic nucleotide-gated (HCN) channel activity in nociceptive DRG neurons, increasing spontaneous action potential firing. Conversely, in a spared nerve injury rat model, RhoA activation expanded OMDs in nociceptive DRG neurons. Constitutive RhoA activation suppressed HCN channel activity and decreased membrane excitability. These findings support a neuroprotective role for RhoA activation, where it restores OMD size and suppresses pathological hyperexcitability in neuropathic pain.
11.

Inward transport of organelles drives outward migration of the spindle during C. elegans meiosis.

blue iLID C. elegans in vivo Control of cytoskeleton / cell motility / cell shape Organelle manipulation
Cell Rep, 22 Mar 2025 DOI: 10.1016/j.celrep.2025.115458 Link to full text
Abstract: Cortical positioning of the meiotic spindle within an oocyte is required to expel chromosomes into polar bodies to generate a zygote with the correct number of chromosomes. In C. elegans, yolk granules and mitochondria are packed inward, away from the cortex, while the spindle moves outward, both in a kinesin-dependent manner. The kinesin-dependent inward packing of yolk granules suggests the existence of microtubules with minus ends at the cortex and plus ends extending inward, making it unclear how kinesin moves the spindle outward. We hypothesize that the inward packing of organelles might indirectly force the spindle outward by volume exclusion. To test this hypothesis, we generate a strain in which the only kinesin consists of motor domains with no cargo-binding tail optogenetically attached to mitochondria. This mitochondria-only kinesin packs mitochondria into a tight ball and efficiently moves the meiotic spindle to the cortex, supporting the volume exclusion hypothesis.
12.

Dynamic and Biphasic Regulation of Cell Migration by Ras.

blue iLID D. discoideum Signaling cascade control Control of cytoskeleton / cell motility / cell shape
bioRxiv, 16 Feb 2025 DOI: 10.1101/2025.02.13.638204 Link to full text
Abstract: Ras has traditionally been regarded as a positive regulator and therapeutic target due to its role in cell proliferation, but recent findings indicate a more nuanced role in cell migration, where suppressed Ras activity can unexpectedly promote migration. To clarify this complexity, we systematically modulate Ras activity using various RasGEF and RasGAP proteins and assess their effects on migration dynamics. Leveraging optogenetics, we assess the immediate, non-transcriptional effects of Ras signaling on migration. Local RasGEF recruitment to the plasma membrane induces protrusions and new fronts to effectively guide migration, even in the absence of GPCR/G-protein signaling whereas global recruitment causes immediate cell spreading halting cell migration. Local RasGAP recruitment suppresses protrusions, generates new backs, and repels cells whereas global relocation either eliminates all protrusions to inhibit migration or preserves a single protrusion to maintain polarity. Consistent local and global increases or decreases in signal transduction and cytoskeletal activities accompany these morphological changes. Additionally, we performed cortical tension measurements and found that RasGEFs generally increase cortical tension while RasGAPs decrease it. Our results reveal a biphasic relationship between Ras activity and cellular dynamics, reinforcing our previous findings that optimal Ras activity and cortical tension are critical for efficient migration.
13.

Optogenetic control of Corynebacterium glutamicum gene expression.

blue near-infrared BphP1/Q-PAS1 EL222 iLID NcWC1-LOV VfAU1-LOV VVD C. glutamicum in silico Transgene expression
Nucleic Acids Res, 11 Dec 2024 DOI: 10.1093/nar/gkae1149 Link to full text
Abstract: Corynebacterium glutamicum is a key industrial workhorse for producing amino acids and high-value chemicals. Balancing metabolic flow between cell growth and product synthesis is crucial for enhancing production efficiency. Developing dynamic, broadly applicable, and minimally toxic gene regulation tools for C. glutamicum remains challenging, as optogenetic tools ideal for dynamic regulatory strategies have not yet been developed. This study introduces an advanced light-controlled gene expression system using light-controlled RNA-binding proteins (RBP), a first for Corynebacterium glutamicum. We established a gene expression regulation system, 'LightOnC.glu', utilizing the light-controlled RBP to construct light-controlled transcription factors in C. glutamicum. Simultaneously, we developed a high-performance light-controlled gene interference system using CRISPR/Cpf1 tools. The metabolic flow in the synthesis network was designed to enable the production of chitin oligosaccharides (CHOSs) and chondroitin sulphate oligosaccharides A (CSA) for the first time in C. glutamicum. Additionally, a light-controlled bioreactor was constructed, achieving a CHOSs production concentration of 6.2 g/L, the highest titer recorded for CHOSs biosynthesis to date. Herein, we have established a programmable light-responsive genetic circuit in C. glutamicum, advancing the theory of dynamic regulation based on light signaling. This breakthrough has potential applications in optimizing metabolic modules in other chassis cells and synthesizing other compounds.
14.

Light-Based Juxtacrine Signaling Between Synthetic Cells.

blue iLID in vitro Control of cell-cell / cell-material interactions
Small Sci, 30 Oct 2024 DOI: 10.1002/smsc.202400401 Link to full text
Abstract: Cell signaling through direct physical cell–cell contacts plays vital roles in biology during development, angiogenesis, and immune response. Intercellular communication mechanisms between synthetic cells constructed from the bottom up are majorly reliant on diffusible chemical signals, thus limiting the range of responses in receiver cells. Engineering contact-dependent signaling between synthetic cells promises to unlock more complicated signaling schemes with spatial responses. Herein, a light-activated contact-dependent communication scheme for synthetic cells is designed and demonstrated. A split luminescent protein is utilized to limit signal generation exclusively to contact interfaces of synthetic cells, driving the recruitment of a photoswitchable protein in receiver cells, akin to juxtacrine signaling in living cells. The modular design not only demonstrates contact-dependent communication between synthetic cells but also provides a platform for engineering orthogonal contact-dependent signaling mechanisms.
15.

Light-induced targeting enables proteomics on endogenous condensates.

blue iLID mESCs Organelle manipulation
Cell, 15 Oct 2024 DOI: 10.1016/j.cell.2024.09.040 Link to full text
Abstract: Endogenous condensates with transient constituents are notoriously difficult to study with common biological assays like mass spectrometry and other proteomics profiling. Here, we report a method for light-induced targeting of endogenous condensates (LiTEC) in living cells. LiTEC combines the identification of molecular zip codes that target the endogenous condensates with optogenetics to enable controlled and reversible partitioning of an arbitrary cargo, such as enzymes commonly used in proteomics, into the condensate in a blue light-dependent manner. We demonstrate a proof of concept by combining LiTEC with proximity-based biotinylation (BioID) and uncover putative components of transcriptional condensates in mouse embryonic stem cells. Our approach opens the road to genome-wide functional studies of endogenous condensates.
16.

Light-guided actin polymerization drives directed motility in protocells.

blue iLID in vitro Control of cytoskeleton / cell motility / cell shape Extracellular optogenetics
bioRxiv, 15 Oct 2024 DOI: 10.1101/2024.10.14.617543 Link to full text
Abstract: Motility is a hallmark of life’s dynamic processes, enabling cells to actively chase prey, repair wounds, and shape organs. Recreating these intricate behaviors using well-defined molecules remains a major challenge at the intersection of biology, physics, and molecular engineering. Although the polymerization force of the actin cytoskeleton is characterized as a primary driver of cell motility, recapitulating this process in protocellular systems has proven elusive. The difficulty lies in the daunting task of distilling key components from motile cells and integrating them into model membranes in a physiologically relevant manner. To address this, we developed a method to optically control actin polymerization with high spatiotemporal precision within cell-mimetic lipid vesicles known as giant unilamellar vesicles (GUVs). Within these active protocells, the reorganization of actin networks triggered outward membrane extensions as well as the unidirectional movement of GUVs at speeds of up to 0.43 µm/min, comparable to typical adherent mammalian cells. Notably, our findings reveal a synergistic interplay between branched and linear actin forms in promoting membrane protrusions, highlighting the cooperative nature of these cytoskeletal elements. This approach offers a powerful platform for unraveling the intricacies of cell migration, designing synthetic cells with active morphodynamics, and advancing bioengineering applications, such as self-propelled delivery systems and autonomous tissue-like materials.
17.

Long range mutual activation establishes Rho and Rac polarity during cell migration.

blue iLID HL-60 Control of cytoskeleton / cell motility / cell shape
bioRxiv, 2 Oct 2024 DOI: 10.1101/2024.10.01.616161 Link to full text
Abstract: In migrating cells, the GTPase Rac organizes a protrusive front, whereas Rho organizes a contractile back. How these GTPases are appropriately positioned at the opposite poles of a migrating cell is unknown. Here we leverage optogenetics, manipulation of cell mechanics, and mathematical modeling to reveal a surprising long-range mutual activation of the front and back polarity programs that complements their well-known local mutual inhibition. This long-range activation is rooted in two distinct modes of mechanochemical crosstalk. Local Rac-based protrusion stimulates Rho activation at the opposite side of the cell via membrane tension-based activation of mTORC2. Conversely, local Rho-based contraction induces cortical-flow-based remodeling of membrane-to-cortex interactions leading to PIP2 release, PIP3 generation, and Rac activation at the opposite side of the cell. We develop a minimal unifying mechanochemical model of the cell to explain how this long-range mechanical facilitation complements local biochemical inhibition to enable robust global Rho and Rac partitioning. Finally, we validate the importance of this long-range facilitation in the context of chemoattractant-based cell polarization and migration in primary human lymphocytes. Our findings demonstrate that the actin cortex and plasma membrane function as an integrated mechanochemical system for long-range partitioning of Rac and Rho during cell migration and likely other cellular contexts.
18.

PIP5K-Ras bistability initiates plasma membrane symmetry breaking to regulate cell polarity and migration.

blue CRY2/CIB1 iLID D. discoideum HL-60 MDA-MB-231 RAW264.7 Control of cytoskeleton / cell motility / cell shape
bioRxiv, 15 Sep 2024 DOI: 10.1101/2024.09.15.613115 Link to full text
Abstract: Symmetry breaking, polarity establishment, and spontaneous cell protrusion formation are fundamental but poorly explained cell behaviors. Here, we demonstrate that a biochemical network, where the mutually inhibitory localization of PIP5K and Ras activities plays a central role, governs these processes. First, in resting cells devoid of cytoskeletal activity, PIP5K is uniformly elevated on the plasma membrane, while Ras activity remains minimal. Symmetry is broken by spontaneous local displacements of PIP5K, coupled with simultaneous activations of Ras and downstream signaling events, including PI3K activation. Second, knockout of PIP5K dramatically increases both the incidence and size of Ras-PI3K activation patches, accompanied by branched F-actin assembly. This leads to enhanced cortical wave formation, increased protrusive activity, and a shift in migration mode. Third, high inducible overexpression of PIP5K virtually eliminates Ras-PI3K signaling, cytoskeletal activity, and cell migration, while acute recruitment of cytosolic PIP5K to the membrane induces contraction and blebs in cancer cells. These arrested phenotypes are reversed by reducing myosin II activity, indicating myosin’s involvement in the PIP5K-Ras-centered regulatory network. Remarkably, low inducible overexpression of PIP5K unexpectedly facilitates polarity establishment, highlighting PIP5K as a highly sensitive master regulator of these processes. Simulations of a computational model combining an excitable system, cytoskeletal loops, and dynamic partitioning of PIP5K recreates the experimental observations. Taken together, our results reveal that a bistable, mutually exclusive localization of PIP5K and active Ras on the plasma membrane triggers the initial symmetry breaking. Coupled actomyosin reduction and increased actin polymerization lead to intermittently extended protrusions and, with feedback from the cytoskeleton, self-organizing, complementary gradients of PIP5K versus Ras steepen, raising the threshold of the networks at the rear and lowering it at the front to generate polarity for cell migration.
19.

Systems mapping of bidirectional endosomal transport through the crowded cell.

blue iLID MEL-JUSO Control of intracellular / vesicular transport
Curr Biol, 13 Sep 2024 DOI: 10.1016/j.cub.2024.08.026 Link to full text
Abstract: Kinesin and dynein-dynactin motors move endosomes and other vesicles bidirectionally along microtubules, a process mainly studied under in vitro conditions. Here, we provide a physiological bidirectional transport model following color-coded, endogenously tagged transport-related proteins as they move through a crowded cellular environment. Late endosomes (LEs) surf bidirectionally on Protrudin-enriched endoplasmic reticulum (ER) membrane contact sites, while hopping and gliding along microtubules and bypassing cellular obstacles, such as mitochondria. During bidirectional transport, late endosomes do not switch between opposing Rab7 GTPase effectors, RILP and FYCO1, or their associated dynein and KIF5B motor proteins, respectively. In the endogenous setting, far fewer motors associate with endosomal membranes relative to effectors, implying coordination of transport with other aspects of endosome physiology through GTPase-regulated mechanisms. We find that directionality of transport is provided in part by various microtubule-associated proteins (MAPs), including MID1, EB1, and CEP169, which recruit Lis1-activated dynein motors to microtubule plus ends for transport of early and late endosomal populations. At these microtubule plus ends, activated dynein motors encounter the dynactin subunit p150glued and become competent for endosomal capture and minus-end movement in collaboration with membrane-associated Rab7-RILP. We show that endosomes surf over the ER through the crowded cell and move bidirectionally under the control of MAPs for motor activation and through motor replacement and capture by endosomal anchors.
20.

ERK synchronizes embryonic cleavages in Drosophila.

blue iLID D. melanogaster in vivo Signaling cascade control Developmental processes
Dev Cell, 27 Aug 2024 DOI: 10.1016/j.devcel.2024.08.004 Link to full text
Abstract: Extracellular-signal-regulated kinase (ERK) signaling controls development and homeostasis and is genetically deregulated in human diseases, including neurocognitive disorders and cancers. Although the list of ERK functions is vast and steadily growing, the full spectrum of processes controlled by any specific ERK activation event remains unknown. Here, we show how ERK functions can be systematically identified using targeted perturbations and global readouts of ERK activation. Our experimental model is the Drosophila embryo, where ERK signaling at the embryonic poles has thus far only been associated with the transcriptional patterning of the future larva. Through a combination of live imaging and phosphoproteomics, we demonstrated that ERK activation at the poles is also critical for maintaining the speed and synchrony of embryonic cleavages. The presented approach to interrogating phosphorylation networks identifies a hidden function of a well-studied signaling event and sets the stage for similar studies in other organisms.
21.

Rapid and reversible dissolution of biomolecular condensates using light-controlled recruitment of a solubility tag.

blue iLID HEK293T NIH/3T3 Organelle manipulation
Nat Commun, 7 Aug 2024 DOI: 10.1038/s41467-024-50858-0 Link to full text
Abstract: Biomolecular condensates are broadly implicated in both normal cellular regulation and disease. Consequently, several chemical biology and optogenetic approaches have been developed to induce phase separation of a protein of interest. However, few tools are available to perform the converse function - dissolving a condensate of interest on demand. Such a tool would aid in testing whether the condensate plays specific functional roles. Here we show that light-gated recruitment of a solubilizing domain, maltose-binding protein (MBP), results in rapid and controlled dissolution of condensates formed from proteins of interest. Our optogenetic MBP-based dissolution strategy (OptoMBP) is rapid, reversible, and can be spatially controlled with subcellular precision. We also provide a proof-of-principle application of OptoMBP by disrupting condensation of the oncogenic fusion protein FUS-CHOP and reverting FUS-CHOP driven transcriptional changes. We envision that the OptoMBP system could be broadly useful for disrupting constitutive protein condensates to probe their biological functions.
22.

Endoplasmic reticulum exit sites are segregated for secretion based on cargo size.

blue iLID U-2 OS Control of intracellular / vesicular transport
Dev Cell, 4 Jul 2024 DOI: 10.1016/j.devcel.2024.06.009 Link to full text
Abstract: TANGO1, TANGO1-Short, and cTAGE5 form stable complexes at the endoplasmic reticulum exit sites (ERES) to preferably export bulky cargoes. Their C-terminal proline-rich domain (PRD) binds Sec23A and affects COPII assembly. The PRD in TANGO1-Short was replaced with light-responsive domains to control its binding to Sec23A in U2OS cells (human osteosarcoma). TANGO1-ShortΔPRD was dispersed in the ER membrane but relocated rapidly, reversibly, to pre-existing ERES by binding to Sec23A upon light activation. Prolonged binding between the two, concentrated ERES in the juxtanuclear region, blocked cargo export and relocated ERGIC53 into the ER, minimally impacting the Golgi complex organization. Bulky collagen VII and endogenous collagen I were collected at less than 47% of the stalled ERES, whereas small cargo molecules were retained uniformly at almost all the ERES. We suggest that ERES are segregated to handle cargoes based on their size, permitting cells to traffic them simultaneously for optimal secretion.
23.

Phospholipase C beta 1 in the dentate gyrus gates fear memory formation through regulation of neuronal excitability.

blue iLID HeLa mouse in vivo primary mouse hippocampal neurons Signaling cascade control
Sci Adv, 3 Jul 2024 DOI: 10.1126/sciadv.adj4433 Link to full text
Abstract: Memory processes rely on a molecular signaling system that balances the interplay between positive and negative modulators. Recent research has focused on identifying memory-regulating genes and their mechanisms. Phospholipase C beta 1 (PLCβ1), highly expressed in the hippocampus, reportedly serves as a convergence point for signal transduction through G protein-coupled receptors. However, the detailed role of PLCβ1 in memory function has not been elucidated. Here, we demonstrate that PLCβ1 in the dentate gyrus functions as a memory suppressor. We reveal that mice lacking PLCβ1 in the dentate gyrus exhibit a heightened fear response and impaired memory extinction, and this excessive fear response is repressed by upregulation of PLCβ1 through its overexpression or activation using a newly developed optogenetic system. Last, our results demonstrate that PLCβ1 overexpression partially inhibits exaggerated fear response caused by traumatic experience. Together, PLCβ1 is crucial in regulating contextual fear memory formation and potentially enhancing the resilience to trauma-related conditions.
24.

Light-Inducible Activation of TrkA for Probing Chronic Pain in Mice.

blue iLID Cos-7 mouse in vivo rat dorsal root ganglion NSCs Signaling cascade control
ACS Chem Biol, 18 Jun 2024 DOI: 10.1021/acschembio.4c00300 Link to full text
Abstract: Chronic pain is a prevalent problem that plagues modern society, and better understanding its mechanisms is critical for developing effective therapeutics. Nerve growth factor (NGF) and its primary receptor, Tropomyosin receptor kinase A (TrkA), are known to be potent mediators of chronic pain, but there is a lack of established methods for precisely perturbing the NGF/TrkA signaling pathway in the study of pain and nociception. Optobiological tools that leverage light-induced protein-protein interactions allow for precise spatial and temporal control of receptor signaling. Previously, our lab reported a blue light-activated version of TrkA generated using light-induced dimerization of the intracellular TrkA domain, opto-iTrkA. In this work, we show that opto-iTrkA activation is able to activate endogenous ERK and Akt signaling pathways and causes the retrograde transduction of phospho-ERK signals in dorsal root ganglion (DRG) neurons. Opto-iTrkA activation also sensitizes the transient receptor potential vanilloid 1 (TRPV1) channel in cellular models, further corroborating the physiological relevance of the optobiological stimulus. Finally, we show that opto-iTrkA enables light-inducible potentiation of mechanical sensitization in mice. Light illumination enables nontraumatic and reversible (<2 days) sensitization of mechanical pain in mice transduced with opto-iTrkA, which provides a platform for dissecting TrkA pathways for nociception in vitro and in vivo.
25.

Interplay of condensation and chromatin binding underlies BRD4 targeting.

blue iLID U-2 OS Organelle manipulation
MBoC, 21 May 2024 DOI: 10.1091/mbc.e24-01-0046 Link to full text
Abstract: Nuclear compartments form via biomolecular phase separation, mediated through multivalent properties of biomolecules concentrated within condensates. Certain compartments are associated with specific chromatin regions, including transcriptional initiation condensates, which are composed of transcription factors and transcriptional machinery, and form at acetylated regions including enhancer and promoter loci. While protein self-interactions, especially within low-complexity and intrinsically disordered regions, are known to mediate condensation, the role of substrate-binding interactions in regulating the formation and function of biomolecular condensates is underexplored. Here, utilizing live-cell experiments in parallel with coarse-grained simulations, we investigate how chromatin interaction of the transcriptional activator BRD4 modulates its condensate formation. We find that both kinetic and thermodynamic properties of BRD4 condensation are affected by chromatin binding: nucleation rate is sensitive to BRD4–chromatin interactions, providing an explanation for the selective formation of BRD4 condensates at acetylated chromatin regions, and thermodynamically, multivalent acetylated chromatin sites provide a platform for BRD4 clustering below the concentration required for off-chromatin condensation. This provides a molecular and physical explanation of the relationship between nuclear condensates and epigenetically modified chromatin that results in their mutual spatiotemporal regulation, suggesting that epigenetic modulation is an important mechanism by which the cell targets transcriptional condensates to specific chromatin loci.
Submit a new publication to our database