Qr: switch:"CRY2olig"
Showing 1 - 25 of 146 results
1.
Technological advances in visualizing and rewiring microtubules during plant development.
Abstract:
Microtubules are crucial regulators of plant development and are organized by a suite of microtubule-associated proteins (MAPs) that can rapidly remodel the array in response to various cues. This complexity has inspired countless studies into microtubule function from the subcellular to tissue scale, revealing an ever-increasing number of microtubule-dependent processes. Developing a comprehensive understanding of how local microtubule configuration, dynamicity, and remodeling drive developmental progression requires new approaches to capture and alter microtubule behavior. In this review, we will introduce the technological advancements we believe are poised to transform the study of microtubules in plant cells. In particular, we focus on (1) advanced imaging and analysis methods to quantify microtubule organization and behavior, and (2) novel tools to target specific microtubule populations in vivo. By showcasing innovative methodologies developed in non-plant systems, we hope to motivate their increased adoption and raise awareness of possible means of adapting them for studying microtubules in plants.
2.
Optogenetic tools for optimizing key signalling nodes in synthetic biology.
-
Tian, Y
-
Xu, S
-
Ye, Z
-
Liu, H
-
Wei, D
-
Zabed, HM
-
Yun, J
-
Zhang, G
-
Zhang, Y
-
Zhang, C
-
Liu, R
-
Li, J
-
Qi, X
Abstract:
The modification of key enzymes for chemical production plays a crucial role in enhancing the yield of targeted products. However, manipulating key nodes in specific signalling pathways remains constrained by traditional gene overexpression or knockout strategies. Discovering and designing optogenetic tools enable us to regulate enzymatic activity or gene expression at key nodes in a spatiotemporal manner, rather than relying solely on chemical induction throughout production processes. In this review, we discuss the recent applications of optogenetic tools in the regulation of microbial metabolites, plant sciences and disease therapies. We categorize optogenetic tools into five classes based on their distinct applications. First, light-induced gene expression schedules can balance the trade-off between chemical production and cell growth phases. Second, light-triggered liquid-liquid phase separation (LLPS) modules provide opportunities to co-localize and condense key enzymes for enhancing catalytic efficiency. Third, light-induced subcellular localized photoreceptors enable the relocation of protein of interest across various subcellular compartments, allowing for the investigation of their dynamic regulatory processes. Fourth, light-regulated enzymes can dynamically regulate production of cyclic nucleotides or investigate endogenous components similar with conditional depletion or recovery function of protein of interest. Fifth, light-gated ion channels and pumps can be utilized to investigate dynamic ion signalling cascades in both animals and plants, or to boost ATP accumulation for enhancing biomass or bioproduct yields in microorganisms. Overall, this review aims to provide a comprehensive overview of optogenetic strategies that have the potential to advance both basic research and bioindustry within the field of synthetic biology.
3.
FLASH-AWAY: Intrabody-Directed Targeting of Optogenetic Tools for Protein Degradation.
Abstract:
Protein homeostasis, or proteostasis, is essential for cellular proteins to function properly. The buildup of abnormal proteins (such as damaged, misfolded, or aggregated proteins) is associated with many diseases, including cancer. Therefore, maintaining proteostasis is critical for cellular health. Currently, genetic methods for modulating proteostasis, such as RNA interference and CRISPR knockout, lack spatial and temporal precision. They are also not suitable for depleting already-synthesized proteins. Similarly, molecular tools like PROTACs and molecular glue face challenges in drug design and discovery. To directly control targeted protein degradation within cells, we introduce an intrabody-based optogenetic toolbox named Flash-Away. Flash-Away integrates the light-responsive ubiquitination activity of the RING domain of TRIM21 for protein degradation, coupled with specific intrabodies for precise targeting. Upon exposure to blue light, Flash-Away enables rapid and targeted degradation of selected proteins. This versatility is demonstrated through successful application to diverse protein targets, including actin, MLKL, and ALFA-tag fused proteins. This innovative light-inducible protein degradation system offers a powerful approach to investigate the functions of specific proteins within physiological contexts. Moreover, Flash-Away presents potential opportunities for clinical translational research and precise medical interventions, advancing the prospects of precision medicine.
4.
EGFR suppression and drug-induced potentiation are widespread features of oncogenic RTK fusions.
Abstract:
Regulation of cancer cells by their environment contributes to tumorigenesis and drug response, though the extent to which the oncogenic state can alter a cell's perception of its environment is not clear. Prior studies found that EML4-ALK, a receptor tyrosine kinase (RTK) fusion oncoprotein, suppresses transmembrane receptor signaling through EGFR. Moreover, suppression was reversed with targeted ALK inhibition, thereby promoting survival and drug tolerance. Here we tested whether such modulation of EGFR was common among other RTK fusions, which collectively are found in ∼5% of all cancers. Using live- and fixed-cell microscopy in isogenic and patient-derived cell lines, we found that a wide variety of RTK fusions suppress transmembrane EGFR and sequester essential adaptor proteins in the cytoplasm, as evidenced by the localization of endogenous Grb2. Targeted therapies rapidly released Grb2 from sequestration and potentiated EGFR. Synthetic optogenetic analogs of RTK fusions confirmed that cytoplasmic sequestration of Grb2 was sufficient to suppress perception of extracellular EGF and could do so without driving signaling from the synthetic fusion itself, demonstrating that fusion signaling and suppression of EGFR could be functionally decoupled. Our study uncovers that a large number of RTK fusions simultaneously act as both activators and suppressors of signaling, the mechanisms of which could be exploited for new biomimetic therapies that enhance cell killing and suppress drug tolerance.
5.
Capitalizing on mechanistic insights to power design of future-ready intracellular optogenetics tools.
Abstract:
Intracellular optogenetics represents a rapidly advancing biotechnology that enables precise, reversible control of protein activity, signaling dynamics, and cellular behaviours using genetically encoded, light-responsive systems. Originally pioneered in neuroscience through channelrhodopsins to manipulate neuronal excitability, the field has since expanded into diverse intracellular applications with broad implications for medicine, agriculture, and biomanufacturing. Key to these advances are photoreceptors such as cryptochrome 2 (CRY2), light-oxygen-voltage (LOV) domains, and phytochromes, which undergo conformational changes upon illumination to trigger conditional protein-protein interactions, localization shifts, or phase transitions. Recent engineering breakthroughs-including the creation of red-light responsive systems such as MagRed that exploit endogenous biliverdin-have enhanced tissue penetration, minimized phototoxicity, and expanded applicability to complex biological systems. This review provides an overarching synthesis of the molecular principles underlying intracellular optogenetic actuators, including the photophysical basis of light-induced conformational changes, oligomerization, and signaling control. We highlight strategies that employ domain fusions, rational mutagenesis, and synthetic circuits to extend their utility across biological and industrial contexts. We also critically assess current limitations, such as chromophore dependence, light delivery challenges, and safety considerations, so as to frame realistic paths towards translation. Looking ahead, future opportunities include multi-colour and multiplexed systems, integration with high-throughput omics and artificial intelligence, and development of non-invasive modalities suited for in vivo and industrial applications. Intracellular optogenetics is thus emerging as a versatile platform technology, with the potential to reshape how we interrogate biology and engineer cells for therapeutic, agricultural, and environmental solutions.
6.
OptoLoop: An optogenetic tool to probe the functional role of genome organization.
Abstract:
The genome folds inside the cell nucleus into hierarchical architectural features, such as chromatin loops and domains. If and how this genome organization influences the regulation of gene expression remains only partially understood. The structure-function relationship of genomes has traditionally been probed by population-wide measurements after mutation of critical DNA elements or by perturbation of chromatin-associated proteins. To circumvent possible pleiotropic effects of such approaches, we have developed OptoLoop, an optogenetic system that allows direct manipulation of chromatin contacts by light in a controlled fashion. OptoLoop is based on the fusion between a nuclease-dead SpCas9 protein and the light-inducible oligomerizing protein CRY2. We demonstrate that OptoLoop can drive the induction of contacts between genomically distant, repetitive DNA loci. As a proof-of-principle application of OptoLoop, we probed the functional role of DNA looping in the regulation of the human telomerase gene TERT by long-range contacts with the telomere. By analyzing the extent of chromatin looping and nascent RNA production at individual alleles, we find evidence for looping-mediated repression of TERT. In sum, OptoLoop represents a novel means for the interrogation of structure-function relationships in the genome at single-allele resolution.
7.
Biomolecular condensates: molecular structure, biological functions, diseases, and therapeutic targets.
Abstract:
Cells constantly encounter environmental and physiological fluctuations that challenge homeostasis and threaten viability. In response to these cues, specific proteins and nucleic acids engage in multivalent interactions and undergo phase separation to form membraneless assemblies known as biomolecular condensates. Nuclear condensates include paraspeckles, nuclear speckles, and Cajal bodies, while cytoplasmic condensates include stress granules, processing bodies, RNA transport granules, U-bodies, and Balbiani bodies. These assemblies regulate transcription, splicing fidelity, RNA stability, translational reprogramming, and integration of signaling pathways, thereby serving as dynamic platforms for metabolic regulation and physiological adaptation. However, dysregulation of these condensates has been increasingly recognized as a central pathogenic mechanism in neurodegenerative diseases, cancers, and viral infections, contributing to toxic protein aggregation, nucleic acid dysregulation, and aberrant cell survival signaling. This review provides a comprehensive synthesis of the molecular mechanisms governing condensation, delineates the diverse types and functions of major biomolecular condensates, and examines therapeutic approaches based on their pathophysiological relevance to disease development and progression. Furthermore, we highlight the cutting-edge technologies, including CRISPR/Cas-based imaging, optogenetic manipulation, and AI-driven phase separation prediction tools, which enable the real-time monitoring and precision targeting of cytoplasmic biomolecular condensates. These insights underscore the emerging potential of biomolecular condensates as both biomarkers and therapeutic targets, paving the way for precision medicine approaches in condensate-associated diseases.
8.
PyCLM: programming-free, closed-loop microscopy for real-time measurement, segmentation, and optogenetic stimulation.
Abstract:
In cell biology, optical techniques are increasingly used to measure cells' internal states (biosensors) and to stimulate cellular responses (optogenetics). Yet the design of all-optical experiments is often manual: a pre-determined stimulus pattern is applied to cells, biosensors are measured over time, and the resulting data is processed off-line. With the advent of machine learning for segmentation and tracking, it becomes possible to envision closed-loop experiments where real-time information about cells' positions and states are used to dynamically determine optogenetic stimuli to alter or control their behavior. Here, we develop PyCLM, a Python-based suite of tools to enable real-time measurement, image segmentation, and optogenetic control of thousands of cells per experiment. PyCLM is designed to be as simple for the end user as possible, and multipoint experiments can be set up that combine a wide variety of imaging, image processing, and stimulation modalities without any programming. We showcase PyCLM on diverse applications: studying the effect of epidermal growth factor receptor activity waves on epithelial tissue movement, simultaneously stimulating ~1,000 single cells to guide tissue flows, and performing real-time feedback control of cell-to-cell fluorescence heterogeneity. This tool will enable the next generation of dynamic experiments to probe cell and tissue properties, and provides a first step toward precise control of cell states at the tissue scale.
9.
Multimodal Key Anti-Oncolytic Therapeutics Are Effective In Cancer Treatment?
Abstract:
Oncolytic virus (OVs) therapy has emerged as a promising modality in cancer immunotherapy, attracting growing attention for its multifaceted mechanisms of tumor elimination. However, its efficacy as a monotherapy remains constrained by physiological barriers, limited delivery routes, and suboptimal immune activation. Phototherapy, an innovative and rapidly advancing cancer treatment technology, can mitigate these limitations when used in conjunction with OVs, enhancing viral delivery, amplifying tumor destruction, and boosting antitumor immune responses. This review provides the first comprehensive analysis of synergistic integration of OVs with both photodynamic therapy (PDT) and photothermal therapy (PTT). It also explores their applications in optical imaging-guided diagnosis and optogenetically controlled delivery. Furthermore, it discusses emerging strategies involving biomimetic virus or viroid-based vectors in conjunction with phototherapy, and delves into the immunomodulatory mechanisms of this combinatorial approach. While promising in preclinical models, these combined strategies are still largely in early-stage research. Challenges such as limited light penetration, delivery efficiency, and safety concerns remain to be addressed for clinical translation. Consequently, the integration of OV therapy and phototherapy represents a compelling strategy in cancer treatment, offering significant promise for advancing precision oncology and next-generation immunotherapies.
10.
Decoding NF-κB: nucleocytoplasmic shuttling dynamics, synthetic modulation and post-therapeutic behavior in cancer.
Abstract:
Nuclear factor kappa B (NF-κB) has been extensively investigated for approximately four decades. Throughout this timeframe, significant progress has been accomplished in determining the structure, function, and regulation of NF-κB; however, some nuanced complexities of this fundamental signaling pathway remain underexplored. A notable gap exists in the spatiotemporal regulation and molecular dynamics of NF-κB nucleocytoplasmic shuttling, which significantly impacts the complex function and behavior, yet lacks comprehensive characterization. The nucleocytoplasmic shuttling process is also related to resistance mechanisms that evolved following the application of NF-κB or proteasomal inhibitors. Furthermore, the NF-κB complex has a stochastic variability in its trafficking that contributes to heterogeneous cellular responses at the single-cell level and lacks a well-defined druggable pocket, making its complete suppression in cancer cells challenging and uncertain. Engineering synthetic gene circuits and utilizing optogenetic tools can pave the way for precise control of the NF-κB complex, enabling advanced investigations into NF-κB regulation and post-therapeutic behavior implicated in cancer resistance. This approach also permits tumor microenvironment (TME)-immune modulation by synthetic gene circuits that reactivate immune cells within the TME. In this review, we discussed the structure and function of NF-κB, the molecular dynamics of NF-κB nucleocytoplasmic shuttling based on established findings, NF-κB engineering via synthetic biology tools, and critically deciphered the post-therapeutic behavior of NF-κB in cancer, supported by potential therapeutic targets to abrogate resistance.
11.
Optogenetic enzymes: A deep dive into design and impact.
Abstract:
Optogenetically regulated enzymes offer unprecedented spatiotemporal control over protein activity, intermolecular interactions, and intracellular signaling. Many design strategies have been developed for their fabrication based on the principles of intrinsic allostery, oligomerization or 'split' status, intracellular compartmentalization, and steric hindrance. In addition to employing photosensory domains as part of the traditional optogenetic toolset, the specificity of effector domains has also been leveraged for endogenous applications. Here, we discuss the dynamics of light activation while providing a bird's eye view of the crafting approaches, targets, and impact of optogenetic enzymes in orchestrating cellular functions, as well as the bottlenecks and an outlook into the future.
12.
Activation of NF-κB Signaling by Optogenetic Clustering of IKKα and β.
Abstract:
Molecular optogenetics allows the control of molecular signaling pathways in response to light. This enables the analysis of the kinetics of signal activation and propagation in a spatially and temporally resolved manner. A key strategy for such control is the light-inducible clustering of signaling molecules, which leads to their activation and subsequent downstream signaling. In this work, an optogenetic approach is developed for inducing graded clustering of different proteins that are fused to eGFP, a widely used protein tag. To this aim, an eGFP-specific nanobody is fused to Cryptochrome 2 variants engineered for different orders of cluster formation. This is exemplified by clustering eGFP-IKKα and eGFP-IKKβ, thereby achieving potent and reversible activation of NF-κB signaling. It is demonstrated that this approach can activate downstream signaling via the endogenous NF-κB pathway and is thereby capable of activating both an NF-κB-responsive reporter construct as well as endogenous NF-κB-responsive target genes as analyzed by RNA sequencing. The generic design of this system is likely transferable to other signaling pathways to analyze the kinetics of signal activation and propagation.
13.
Advances in optogenetically engineered bacteria in disease diagnosis and therapy.
Abstract:
Optogenetic bacterial technology is a cutting-edge approach that combines optogenetics and microbiology, offering a transformative strategy for disease diagnosis and therapy. This synergistic merger transcends the limitations of traditional diagnostic and therapeutic methodologies in a highly controllable, accurate and non-invasive manner. In this review, we introduce the optogenetic systems developed for microbial engineering and summarize fundamental in vitro design principles underlying light-responsive signal transduction in bacteria, as well as the optogenetic regulation of bacterial behaviors. We address multidisciplinary solutions to the challenges in the in vivo applications of light-controlled bacteria, such as limited light excitation, suboptimal delivery and targeting, and difficulties in signal tracking and management. Furthermore, we comprehensively highlight the recent progress in photo-responsive bacteria for disease diagnosis and therapy, and discuss how to accelerate translational applications.
14.
Optogenetics-enabled discovery of integrated stress response modulators.
-
Wong, F
-
Li, A
-
Omori, S
-
Lach, RS
-
Nunez, J
-
Ren, Y
-
Brown, SP
-
Singhal, V
-
Lyda, BR
-
Batjargal, T
-
Dickson, E
-
Rodrigues Reyes, JR
-
Uruena Vargas, JM
-
Wahane, S
-
Kim, H
-
Collins, JJ
-
Wilson, MZ
Abstract:
The integrated stress response (ISR) is a conserved stress response that maintains homeostasis in eukaryotic cells. Modulating the ISR holds therapeutic potential for diseases including viral infection, cancer, and neurodegeneration, but few known compounds can do so without toxicity. Here, we present an optogenetic platform for the discovery of compounds that selectively modulate the ISR. Optogenetic clustering of PKR induces ISR-mediated cell death, enabling the high-throughput screening of 370,830 compounds. We identify compounds that potentiate cell death without cytotoxicity across diverse cell types and stressors. Mechanistic studies reveal that these compounds upregulate activating transcription factor 4 (ATF4), sensitizing cells to stress and apoptosis, and identify GCN2 as a molecular target. Additionally, these compounds exhibit antiviral activity, and one compound reduced viral titers in a mouse model of herpesvirus infection. Structure-activity and toxicology studies highlight opportunities to optimize therapeutic efficacy. This work demonstrates an optogenetic approach to drug discovery and introduces ISR potentiators with therapeutic potential.
15.
Capturing α-synuclein aggregation interactors using UltraID-LIPA.
Abstract:
Teixeira et al. present UltraID-light-inducible protein aggregation (UltraID-LIPA), a technique that combines optogenetic induction of α-synuclein aggregation with proximity-based proteomics. This system enables high-resolution capture of early aggregation events in live cells and implicates known and novel endolysosomal proteins, offering a robust framework for dissecting early pathogenic mechanisms in synucleinopathies and guiding future innovations.
16.
Pharmacological interventions on GSK3β phosphorylation-mediated tau aggregation by modulating phase separation of tau proline-rich domain.
Abstract:
Tau pathological aggregation in neurofibrillary tangles is a hallmark of several neurodegenerative diseases, including Alzheimer's disease. Phase separation is a thermodynamic process that plays an important role in biomolecular membrane-less condensate formation, while abnormal phase separation of tau leads to pathological aggregate formation. However, the detailed molecular mechanism underlying tau condensation remains not fully understood. Moreover, whether condensation-based pharmacological intervention will be helpful for the treatment of tau-associated neurodegenerative diseases remains elusive. Here, we used an optogenetic tool (optoDroplets) in combination with cell biology and pharmacology to explore the contribution of different domains for tau condensation in cells, and we found that proline-rich domain (PRD) phosphorylation, which is mainly regulated by glycogen synthase kinase 3 β (GSK3β), plays important roles for tau condensation. Moreover, phosphorylation of tau PRD regulates its mis-localization on nuclear speckle. Interestingly and importantly, we found that pharmacological inhibition of GSK3β can impede abnormal tau condensation to slow down the tau-associated pathological process.
17.
Optogenetics to biomolecular phase separation in neurodegenerative diseases.
Abstract:
Neurodegenerative diseases involve toxic protein aggregation. Recent evidence suggests that biomolecular phase separation, a process in which proteins and nucleic acids form dynamic, liquid-like condensates, plays a key role in this aggregation. Optogenetics, originally developed to control neuronal activity with light, has emerged as a powerful tool to investigate phase separation in living systems. This is achieved by fusing disease-associated proteins to light-sensitive oligomerization domains, enabling researchers to induce or reverse condensate formation with precise spatial and temporal control. This review highlights how optogenetic systems such as OptoDroplet are being used to dissect the mechanisms of neurodegenerative disease. We examine how these tools have been applied in models of neurodegenerative diseases, such as amyotrophic lateral sclerosis, Alzheimer's, Parkinson's, and Huntington's disease. These studies implicate small oligomeric aggregates as key drivers of toxicity and highlight new opportunities for therapeutic screening. Finally, we discuss advances in light-controlled dissolution of condensates and future directions for applying optogenetics to combat neurodegeneration. By enabling precise, dynamic control of protein phase behavior in living systems, optogenetic approaches provide a powerful framework for elucidating disease mechanisms and informing the development of targeted therapies.
18.
Membranes arrest the coarsening of mitochondrial condensates.
Abstract:
Mitochondria contain double membranes that enclose their contents. Within their interior, the mitochondrial genome and its RNA products are condensed into ∼100 nm sized (ribo)nucleoprotein complexes. How these endogenous condensates maintain their roughly uniform size and spatial distributions within membranous mitochondria remains unclear. Here, we engineered an optogenetic tool (mt-optoIDR) that allowed for controlled formation of synthetic condensates upon light activation in live mitochondria. Using live cell super-resolution microscopy, we visualized the nucleation of small, yet elongated condensates (mt-opto-condensates), which recapitulated the morphologies of endogenous mitochondrial condensates. We decoupled the contribution of the double membranes from the environment within the matrix by overexpressing the dominant negative mutant of a membrane fusion protein (Drp1K38A). The resulting bulbous mitochondria had significantly more dynamic condensates that coarsened into a single, prominent droplet. These observations inform how mitochondrial membranes can limit the growth and dynamics of the condensates they enclose, without the need of additional regulatory mechanisms.
19.
Combining light-induced aggregation and biotin proximity labeling implicates endolysosomal proteins in early α-synuclein oligomerization.
Abstract:
Alpha-synuclein (α-syn) aggregation is a defining feature of Parkinson's disease (PD) and related synucleinopathies. Despite significant research efforts focused on understanding α-syn aggregation mechanisms, the early stages of this process remain elusive, largely due to limitations in experimental tools that lack the temporal resolution to capture these dynamic events. Here, we introduce UltraID-LIPA, an innovative platform that combines the light-inducible protein aggregation (LIPA) system with the UltraID proximity-dependent biotinylation assay to identify α-syn-interacting proteins and uncover key mechanisms driving its oligomerization. UltraID-LIPA successfully identified 38 α-syn-interacting proteins, including both established and previously unreported candidates, highlighting the accuracy and robustness of the approach. Notably, a strong interaction with endolysosomal and membrane-associated proteins was observed, supporting the hypothesis that interactions with membrane-bound organelles are pivotal in the early stages of α-syn aggregation. This powerful platform provides new insights into dynamic protein aggregation events, enhancing our understanding of synucleinopathies and other proteinopathies.
20.
Tau Oligomerization Drives Neurodegeneration via Nuclear Membrane Invagination and Lamin B Receptor Binding in Alzheimer’s disease.
Abstract:
The microtubule-associated protein tau aggregates into oligomeric complexes that highly correlate with Alzheimer’s disease (AD) progression. Increasing evidence suggests that nuclear membrane disruption occurs in AD and related tauopathies, but whether this is a cause or consequence of neurodegeneration remains unclear. Using the optogenetically inducible 4R1N Tau::mCherry::Cry2Olig (optoTau) system in iPSC-derived neurons, we demonstrate that tau oligomerization triggers nuclear rupture and nuclear membrane invagination. Pathological tau accumulates at sites of invagination, inducing structural abnormalities in the nuclear envelope and piercing into the nuclear space. These findings were confirmed in the humanized P301S tau (PS19) transgenic mouse model, where nuclear envelope disruption appeared as an early-onset event preceding neurodegeneration. Further validation in post-mortem AD brain tissues revealed nuclear lamina disruption correlating with pathological tau emergence in early-stage patients. Notably, electron microscopy shows that tau-induced nuclear invagination triggers global chromatin reorganization, potentially driving aberrant gene expression and protein translation associated with AD. These findings suggest that nuclear membrane disruption is an early and possibly causative event in tau-mediated neurodegeneration, establishing a mechanistic link between tau oligomerization and nuclear stress. Further investigation into nuclear destabilization could inform clinical strategies for mitigating AD pathogenesis.
21.
Engineering plant photoreceptors towards enhancing plant productivity.
Abstract:
Light is a critical environmental factor that governs the growth and development of plants. Plants have specialised photoreceptor proteins, which allow them to sense both quality and quantity of light and drive a wide range of responses critical for optimising growth, resource use and adaptation to changes in environment. Understanding the role of these photoreceptors in plant biology has opened up potential avenues for engineering crops with enhanced productivity by engineering photoreceptor activity and/or action. The ability to manipulate plant genomes through genetic engineering and synthetic biology approaches offers the potential to unlock new agricultural innovations by fine-tuning photoreceptors or photoreceptor pathways that control plant traits of agronomic significance. Additionally, optogenetic tools which allow for precise, light-triggered control of plant responses are emerging as powerful technologies for real-time manipulation of plant cellular responses. As these technologies continue to develop, the integration of photoreceptor engineering and optogenetics into crop breeding programs could potentially revolutionise how plant researchers tackle challenges of plant productivity. Here we provide an overview on the roles of key photoreceptors in regulating agronomically important traits, the current state of plant photoreceptor engineering, the emerging use of optogenetics and synthetic biology, and the practical considerations of applying these approaches to crop improvement. This review seeks to highlight both opportunities and challenges in harnessing photoreceptor engineering approaches for enhancing plant productivity. In this review, we provide an overview on the roles of key photoreceptors in regulating agronomically important traits, the current state of plant photoreceptor engineering, the emerging use of optogenetics and synthetic biology, and the practical considerations of applying these approaches to crop improvement.
22.
Optogenetic induction of TDP-43 aggregation impairs neuronal integrity and behavior in Caenorhabditis elegans.
Abstract:
Background
Cytoplasmic aggregation of TAR DNA binding protein 43 (TDP-43) in neurons is one of the hallmarks of TDP-43 proteinopathy. Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are closely associated with TDP-43 proteinopathy; however, it remains uncertain whether TDP-43 aggregation initiates the pathology or is a consequence of it.
Methods
To demonstrate the pathology of TDP-43 aggregation, we applied the optoDroplet technique in Caenorhabditis elegans (C. elegans), which allows spatiotemporal modulation of TDP-43 phase separation and assembly.
Results
We demonstrate that optogenetically induced TDP-43 aggregates exhibited insolubility similar to that observed in TDP-43 proteinopathy. These aggregates increased the severity of neurodegeneration, particularly in GABAergic motor neurons, and exacerbated sensorimotor dysfunction in C. elegans.
Conclusions
We present an optogenetic C. elegans model of TDP-43 proteinopathy that provides insight into the neuropathological mechanisms of TDP-43 aggregates. Our model serves as a promising tool for identifying therapeutic targets for TDP-43 proteinopathy.
23.
Emerging roles of transcriptional condensates as temporal signal integrators.
Abstract:
Transcription factors relay information from the external environment to gene regulatory networks that control cell physiology. To confer signalling specificity, robustness and coordination, these signalling networks use temporal communication codes, such as the amplitude, duration or frequency of signals. Although much is known about how temporal information is encoded, a mechanistic understanding of how gene regulatory networks decode signalling dynamics is lacking. Recent advances in our understanding of phase separation of transcriptional condensates provide new biophysical frameworks for both temporal encoding and decoding mechanisms. In this Perspective, we summarize the mechanisms by which transcriptional condensates could enable temporal decoding through signal adaptation, memory and persistence. We further outline methods to probe and manipulate dynamic communication codes of transcription factors and condensates to rationally control gene activation.
24.
POT, an optogenetics-based endogenous protein degradation system.
Abstract:
Precise regulation of protein abundance is critical for cellular homeostasis, whose dysfunction may directly lead to human diseases. Optogenetics allows rapid and reversible control of precisely defined cellular processes, which has the potential to be utilized for regulation of protein dynamics at various scales. Here, we developed a novel optogenetics-based protein degradation system, namely Peptide-mediated OptoTrim-Away (POT) which employs expressed small peptides to effectively target endogenous and unmodified proteins. By engineering the light-induced oligomerization of the E3 ligase TRIM21, POT can rapidly trigger protein degradation via the proteasomal pathway. Our results showed that the developed POT-PI3K and POT-GPX4 modules, which used the iSH2 and FUNDC1 domains to specifically target phosphoinositide 3-kinase (PI3K) and glutathione peroxidase 4 (GPX4) respectively, were able to potently induce the degradation of these endogenous proteins by light. Both live-cell imaging and biochemical experiments validated the potency of these tools in downregulating cancer cell migration, proliferation, and even promotion of cell apoptosis. Therefore, we believe the POT offers an alternative and practical solution for rapid manipulation of endogenous protein levels, and it could potentially be employed to dissect complex signaling pathways in cell and for targeted cellular therapies.
25.
Large-scale control over collective cell migration using light-activated epidermal growth factor receptors.
Abstract:
Receptor tyrosine kinases (RTKs) play key roles in coordinating cell movement at both single-cell and tissue scales. The recent development of optogenetic tools for controlling RTKs and their downstream signaling pathways suggests that these responses may be amenable to engineering-based control for sculpting tissue shape and function. Here, we report that a light-controlled epidermal growth factor (EGF) receptor (OptoEGFR) can be deployed in epithelial cells for precise, programmable control of long-range tissue movements. We show that in OptoEGFR-expressing tissues, light can drive millimeter-scale cell rearrangements to densify interior regions or produce rapid outgrowth at tissue edges. Light-controlled tissue movements are driven primarily by phosphoinositide 3-kinase (PI3K) signaling, rather than diffusible ligands, tissue contractility, or ERK kinase signaling as seen in other RTK-driven migration contexts. Our study suggests that synthetic, light-controlled RTKs could serve as a powerful platform for controlling cell positions and densities for diverse applications, including wound healing and tissue morphogenesis.