Showing 251 - 275 of 309 results
251.
Natural photoreceptors and their application to synthetic biology.
Abstract:
The ability to perturb living systems is essential to understand how cells sense, integrate, and exchange information, to comprehend how pathologic changes in these processes relate to disease, and to provide insights into therapeutic points of intervention. Several molecular technologies based on natural photoreceptor systems have been pioneered that allow distinct cellular signaling pathways to be modulated with light in a temporally and spatially precise manner. In this review, we describe and discuss the underlying design principles of natural photoreceptors that have emerged as fundamental for the rational design and implementation of synthetic light-controlled signaling systems. Furthermore, we examine the unique challenges that synthetic protein technologies face when applied to the study of neural dynamics at the cellular and network level.
252.
Benchmarking of optical dimerizer systems.
Abstract:
Optical dimerizers are a powerful new class of optogenetic tools that allow light-inducible control of protein-protein interactions. Such tools have been useful for regulating cellular pathways and processes with high spatiotemporal resolution in live cells, and a growing number of dimerizer systems are available. As these systems have been characterized by different groups using different methods, it has been difficult for users to compare their properties. Here, we set about to systematically benchmark the properties of four optical dimerizer systems, CRY2/CIB1, TULIPs, phyB/PIF3, and phyB/PIF6. Using a yeast transcriptional assay, we find significant differences in light sensitivity and fold-activation levels between the red light regulated systems but similar responses between the CRY2/CIB and TULIP systems. Further comparison of the ability of the CRY2/CIB1 and TULIP systems to regulate a yeast MAPK signaling pathway also showed similar responses, with slightly less background activity in the dark observed with CRY2/CIB. In the process of developing this work, we also generated an improved blue-light-regulated transcriptional system using CRY2/CIB in yeast. In addition, we demonstrate successful application of the CRY2/CIB dimerizers using a membrane-tethered CRY2, which may allow for better local control of protein interactions. Taken together, this work allows for a better understanding of the capacities of these different dimerization systems and demonstrates new uses of these dimerizers to control signaling and transcription in yeast.
253.
Orthogonal optogenetic triple-gene control in Mammalian cells.
Abstract:
Optogenetic gene switches allow gene expression control at an unprecedented spatiotemporal resolution. Recently, light-responsive transgene expression systems that are activated by UV-B, blue, or red light have been developed. These systems perform well on their own, but their integration into genetic networks has been hampered by the overlapping absorbance spectra of the photoreceptors. We identified a lack of orthogonality between UV-B and blue light-controlled gene expression as the bottleneck and employed a model-based approach that identified the need for a blue light-responsive gene switch that is insensitive to low-intensity light. Based on this prediction, we developed a blue light-responsive and rapidly reversible expression system. Finally, we employed this expression system to demonstrate orthogonality between UV-B, blue, and red/far-red light-responsive gene switches in a single mammalian cell culture. We expect this approach to enable the spatiotemporal control of gene networks and to expand the applications of optogenetics in synthetic biology.
254.
Ultradian oscillations and pulses: coordinating cellular responses and cell fate decisions.
Abstract:
Biological clocks play key roles in organismal development, homeostasis and function. In recent years, much work has focused on circadian clocks, but emerging studies have highlighted the existence of ultradian oscillators - those with a much shorter periodicity than 24 h. Accumulating evidence, together with recently developed optogenetic approaches, suggests that such ultradian oscillators play important roles during cell fate decisions, and analyzing the functional links between ultradian oscillation and cell fate determination will contribute to a deeper understanding of the design principle of developing embryos. In this Review, we discuss the mechanisms of ultradian oscillatory dynamics and introduce examples of ultradian oscillators in various biological contexts. We also discuss how optogenetic technology has been used to elucidate the biological significance of ultradian oscillations.
255.
Optogenetic approaches to cell migration and beyond.
Abstract:
Optogenetics, the use of genetically encoded tools to control protein function with light, can generate localized changes in signaling within living cells and animals. For years it has been focused on channel proteins for neurobiology, but has recently expanded to cover many different types of proteins, using a broad array of different protein engineering approaches. These methods have largely been directed at proteins involved in motility, cytoskeletal regulation and gene expression. This review provides a survey of non-channel proteins that have been engineered for optogenetics. Existing molecules are used to illustrate the advantages and disadvantages of the many imaginative new approaches that the reader can use to create light-controlled proteins.
256.
Optogenetic control of signaling in mammalian cells.
Abstract:
Molecular signals are sensed by their respective receptors and information is transmitted and processed by a sophisticated intracellular network controlling various biological functions. Optogenetic tools allow the targeting of specific signaling nodes for a precise spatiotemporal control of downstream effects. These tools are based on photoreceptors such as phytochrome B (PhyB), cryptochrome 2, or light-oxygen-voltage-sensing domains that reversibly bind to specific interaction partners in a light-dependent manner. Fusions of a protein of interest to the photoreceptor or their interaction partners may enable the control of the protein function by light-mediated dimerization, a change of subcellular localization, or due to photocaging/-uncaging of effectors. In this review, we summarize the photoreceptors and the light-based mechanisms utilized for the modulation of signaling events in mammalian cells focusing on non-neuronal applications. We discuss in detail optogenetic tools and approaches applied to control signaling events mediated by second messengers, Rho GTPases and growth factor-triggered signaling cascades namely the RAS/RAF and phosphatidylinositol-3-kinase pathways. Applying the latest generation of optogenetic tools allows to control cell fate decisions such as proliferation and differentiation or to deliver therapeutic substances in a spatiotemporally controlled manner.
257.
Illuminating cell signalling with optogenetic tools.
Abstract:
The light-based control of ion channels has been transformative for the neurosciences, but the optogenetic toolkit does not stop there. An expanding number of proteins and cellular functions have been shown to be controlled by light, and the practical considerations in deciding between reversible optogenetic systems (such as systems that use light-oxygen-voltage domains, phytochrome proteins, cryptochrome proteins and the fluorescent protein Dronpa) are well defined. The field is moving beyond proof of concept to answering real biological questions, such as how cell signalling is regulated in space and time, that were difficult or impossible to address with previous tools.
258.
Crystal structure of the photosensing module from a red/far-red light-absorbing plant phytochrome.
Abstract:
Many aspects of plant photomorphogenesis are controlled by the phytochrome (Phy) family of bilin-containing photoreceptors that detect red and far-red light by photointerconversion between a dark-adapted Pr state and a photoactivated Pfr state. Whereas 3D models of prokaryotic Phys are available, models of their plant counterparts have remained elusive. Here, we present the crystal structure of the photosensing module (PSM) from a seed plant Phy in the Pr state using the PhyB isoform from Arabidopsis thaliana. The PhyB PSM crystallized as a head-to-head dimer with strong structural homology to its bacterial relatives, including a 5(Z)syn, 10(Z)syn, 15(Z)anti configuration of the phytochromobilin chromophore buried within the cGMP phosphodiesterase/adenylyl cyclase/FhlA (GAF) domain, and a well-ordered hairpin protruding from the Phy-specific domain toward the bilin pocket. However, its Per/Arnt/Sim (PAS) domain, knot region, and helical spine show distinct structural differences potentially important to signaling. Included is an elongated helical spine, an extended β-sheet connecting the GAF domain and hairpin stem, and unique interactions between the region upstream of the PAS domain knot and the bilin A and B pyrrole rings. Comparisons of this structure with those from bacterial Phys combined with mutagenic studies support a toggle model for photoconversion that engages multiple features within the PSM to stabilize the Pr and Pfr end states after rotation of the D pyrrole ring. Taken together, this Arabidopsis PhyB structure should enable molecular insights into plant Phy signaling and provide an essential scaffold to redesign their activities for agricultural benefit and as optogenetic reagents.
259.
Optogenetic characterization methods overcome key challenges in synthetic and systems biology.
Abstract:
Systems biologists aim to understand how organism-level processes, such as differentiation and multicellular development, are encoded in DNA. Conversely, synthetic biologists aim to program systems-level biological processes, such as engineered tissue growth, by writing artificial DNA sequences. To achieve their goals, these groups have adapted a hierarchical electrical engineering framework that can be applied in the forward direction to design complex biological systems or in the reverse direction to analyze evolved networks. Despite much progress, this framework has been limited by an inability to directly and dynamically characterize biological components in the varied contexts of living cells. Recently, two optogenetic methods for programming custom gene expression and protein localization signals have been developed and used to reveal fundamentally new information about biological components that respond to those signals. This basic dynamic characterization approach will be a major enabling technology in synthetic and systems biology.
260.
How to control proteins with light in living systems.
Abstract:
The possibility offered by photocontrolling the activity of biomolecules in vivo while recording physiological parameters is opening up new opportunities for the study of physiological processes at the single-cell level in a living organism. For the last decade, such tools have been mainly used in neuroscience, and their application in freely moving animals has revolutionized this field. New photochemical approaches enable the control of various cellular processes by manipulating a wide range of protein functions in a noninvasive way and with unprecedented spatiotemporal resolution. We are at a pivotal moment where biologists can adapt these cutting-edge technologies to their system of study. This user-oriented review presents the state of the art and highlights technical issues to be resolved in the near future for wide and easy use of these powerful approaches.
261.
Optical control of protein function through unnatural amino acid mutagenesis and other optogenetic approaches.
Abstract:
Biological processes are naturally regulated with high spatial and temporal resolution at the molecular, cellular, and systems level. To control and study processes with the same resolution, light-sensitive groups and domains have been employed to optically activate and deactivate protein function. Optical control is a noninvasive technique in which the amplitude, wavelength, spatial location, and timing of the light illumination can be easily controlled. This review focuses on applications of genetically encoded unnatural amino acids containing light-removable protecting groups to optically trigger protein function, while also discussing select optogenetic approaches using natural light-sensitive domains to engineer optical control of biological processes.
262.
Control of gene expression using a red- and far-red light-responsive bi-stable toggle switch.
Abstract:
Light-triggered gene expression systems offer an unprecedented spatiotemporal resolution that cannot be achieved with classical chemically inducible genetic tools. Here we describe a protocol for red light-responsive gene expression in mammalian cells. This system can be toggled between stable ON and OFF states by short pulses of red and far-red light, respectively. In the protocol, CHO-K1 cells are transfected to allow red light-inducible expression of the secreted alkaline phosphatase (SEAP) reporter, and gene expression is tuned by illumination with light of increasing wavelengths. As a starting point for elaborate red light-responsive gene expression, we outline the reversible activation of gene expression and describe how a spatial pattern can be 'printed' on a monolayer of cells by using a photomask. The core protocol requires only 4 d from seeding of the cells to reporter quantification, and other than light-emitting diode (LED) illumination boxes no elaborate equipment is required.
263.
A red light-controlled synthetic gene expression switch for plant systems.
Abstract:
On command control of gene expression in time and space is required for the comprehensive analysis of key plant cellular processes. Even though some chemical inducible systems showing satisfactory induction features have been developed, they are inherently limited in terms of spatiotemporal resolution and may be associated with toxic effects. We describe here the first synthetic light-inducible system for the targeted control of gene expression in plants. For this purpose, we applied an interdisciplinary synthetic biology approach comprising mammalian and plant cell systems to customize and optimize a split transcription factor based on the plant photoreceptor phytochrome B and one of its interacting factors (PIF6). Implementation of the system in transient assays in tobacco protoplasts resulted in strong (95-fold) induction in red light (660 nm) and could be instantaneously returned to the OFF state by subsequent illumination with far-red light (740 nm). Capitalizing on this toggle switch-like characteristic, we demonstrate that the system can be kept in the OFF state in the presence of 740 nm-supplemented white light, opening up perspectives for future application of the system in whole plants. Finally we demonstrate the system's applicability in basic research, by the light-controlled tuning of auxin signalling networks in N. tabacum protoplasts, as well as its biotechnological potential for the chemical-inducer free production of therapeutic proteins in the moss P. patens.
264.
Using optogenetics to interrogate the dynamic control of signal transmission by the Ras/Erk module.
Abstract:
The complex, interconnected architecture of cell-signaling networks makes it challenging to disentangle how cells process extracellular information to make decisions. We have developed an optogenetic approach to selectively activate isolated intracellular signaling nodes with light and use this method to follow the flow of information from the signaling protein Ras. By measuring dose and frequency responses in single cells, we characterize the precision, timing, and efficiency with which signals are transmitted from Ras to Erk. Moreover, we elucidate how a single pathway can specify distinct physiological outcomes: by combining distinct temporal patterns of stimulation with proteomic profiling, we identify signaling programs that differentially respond to Ras dynamics, including a paracrine circuit that activates STAT3 only after persistent (>1 hr) Ras activation. Optogenetic stimulation provides a powerful tool for analyzing the intrinsic transmission properties of pathway modules and identifying how they dynamically encode distinct outcomes.
265.
Synthesis of phycocyanobilin in mammalian cells.
Abstract:
The chromophore 3-Z phycocyanobilin (PCB, (2R,3Z)-8,12-bis(2-carboxyethyl)-18-ethyl-3-ethylidene-2,7,13,17-tetramethyl-2,3-dihydrobilin-1,19(21H,24H)-dione) mediates red and far-red light perception in natural and synthetic biological systems. Here we describe a PCB synthesis strategy in mammalian cells. We optimize the production by co-localizing the biocatalysts to the substrate source, by coordinating the availability of the biocatalysts and by reducing the degradation of the reaction product. We show that the resulting PCB levels of 2 μM are sufficient to sustain the functionality of red light-responsive optogenetic tools suitable for the light-inducible control of gene expression in mammalian cells.
266.
Optobiology: optical control of biological processes via protein engineering.
Abstract:
Enabling optical control over biological processes is a defining goal of the new field of optogenetics. Control of membrane voltage by natural rhodopsin family ion channels has found widespread acceptance in neuroscience, due to the fact that these natural proteins control membrane voltage without further engineering. In contrast, optical control of intracellular biological processes has been a fragmented effort, with various laboratories engineering light-responsive properties into proteins in different manners. In the present article, we review the various systems that have been developed for controlling protein functions with light based on vertebrate rhodopsins, plant photoregulatory proteins and, most recently, the photoswitchable fluorescent protein Dronpa. By allowing biology to be controlled with spatiotemporal specificity and tunable dynamics, light-controllable proteins will find applications in the understanding of cellular and organismal biology and in synthetic biology.
267.
A light-inducible organelle-targeting system for dynamically activating and inactivating signaling in budding yeast.
Abstract:
Protein localization plays a central role in cell biology. Although powerful tools exist to assay the spatial and temporal dynamics of proteins in living cells, our ability to control these dynamics has been much more limited. We previously used the phytochrome B- phytochrome-interacting factor light-gated dimerization system to recruit proteins to the plasma membrane, enabling us to control the activation of intracellular signals in mammalian cells. Here we extend this approach to achieve rapid, reversible, and titratable control of protein localization for eight different organelles/positions in budding yeast. By tagging genes at the endogenous locus, we can recruit proteins to or away from their normal sites of action. This system provides a general strategy for dynamically activating or inactivating proteins of interest by controlling their localization and therefore their availability to binding partners and substrates, as we demonstrate for galactose signaling. More importantly, the temporal and spatial precision of the system make it possible to identify when and where a given protein's activity is necessary for function, as we demonstrate for the mitotic cyclin Clb2 in nuclear fission and spindle stabilization. Our light-inducible organelle-targeting system represents a powerful approach for achieving a better understanding of complex biological systems.
268.
Phytochrome-interacting factors have both shared and distinct biological roles.
Abstract:
Phytochromes are plant photoreceptors that perceive red and far-red light. Upon the perception of light in Arabidopsis, light-activated phytochromes enter the nucleus and act on a set of interacting proteins, modulating their activities and thereby altering the expression levels of ∼10% of the organism's entire gene complement. Phytochromeinteracting factors (PIFs) belonging to Arabidopsis basic helix-loop-helix (bHLH) subgroup 15 are key interacting proteins that play negative roles in light responses. Their activities are post-translationally countered by light-activated phytochromes, which promote the degradation of PIFs and directly or indirectly inhibit their binding to DNA. The PIFs share a high degree of similarity, but examinations of pif single and multiple mutants have indicated that they have shared and distinct functions in various developmental and physiological processes. These are believed to stem from differences in both intrinsic protein properties and their gene expression patterns. In an effort to clarify the basis of these shared and distinct functions, we compared recently published genome-wide ChIP data, developmental gene expression maps, and responses to various stimuli for the various PIFs. Based on our observations, we propose that the biological roles of PIFs stem from their shared and distinct DNA binding targets and specific gene expression patterns.
269.
Biomedically relevant circuit-design strategies in mammalian synthetic biology.
Abstract:
The development and progress in synthetic biology has been remarkable. Although still in its infancy, synthetic biology has achieved much during the past decade. Improvements in genetic circuit design have increased the potential for clinical applicability of synthetic biology research. What began as simple transcriptional gene switches has rapidly developed into a variety of complex regulatory circuits based on the transcriptional, translational and post-translational regulation. Instead of compounds with potential pharmacologic side effects, the inducer molecules now used are metabolites of the human body and even members of native cell signaling pathways. In this review, we address recent progress in mammalian synthetic biology circuit design and focus on how novel designs push synthetic biology toward clinical implementation. Groundbreaking research on the implementation of optogenetics and intercellular communications is addressed, as particularly optogenetics provides unprecedented opportunities for clinical application. Along with an increase in synthetic network complexity, multicellular systems are now being used to provide a platform for next-generation circuit design.
270.
Multi-chromatic control of mammalian gene expression and signaling.
-
Müller, K
-
Engesser, R
-
Schulz, S
-
Steinberg, T
-
Tomakidi, P
-
Weber, CC
-
Ulm, R
-
Timmer, J
-
Zurbriggen, MD
-
Weber, W
Abstract:
The emergence and future of mammalian synthetic biology depends on technologies for orchestrating and custom tailoring complementary gene expression and signaling processes in a predictable manner. Here, we demonstrate for the first time multi-chromatic expression control in mammalian cells by differentially inducing up to three genes in a single cell culture in response to light of different wavelengths. To this end, we developed an ultraviolet B (UVB)-inducible expression system by designing a UVB-responsive split transcription factor based on the Arabidopsis thaliana UVB receptor UVR8 and the WD40 domain of COP1. The system allowed high (up to 800-fold) UVB-induced gene expression in human, monkey, hamster and mouse cells. Based on a quantitative model, we determined critical system parameters. By combining this UVB-responsive system with blue and red light-inducible gene control technology, we demonstrate multi-chromatic multi-gene control by differentially expressing three genes in a single cell culture in mammalian cells, and we apply this system for the multi-chromatic control of angiogenic signaling processes. This portfolio of optogenetic tools enables the design and implementation of synthetic biological networks showing unmatched spatiotemporal precision for future research and biomedical applications.
271.
Optogenetic tools for mammalian systems.
Abstract:
Light is fundamental to life on earth. Therefore, nature has evolved a multitude of photoreceptors that sense light across all kingdoms. This natural resource provides synthetic biology with a vast pool of light-sensing components with distinct spectral properties that can be harnessed to engineer novel optogenetic tools. These devices enable control over gene expression, cell morphology and signaling pathways with superior spatiotemporal resolution and are maturing towards elaborate applications in basic research, in the production of biopharmaceuticals and in biomedicine. This article provides a summary of the recent advances in optogenetics that use light for the precise control of biological functions in mammalian cells.
272.
Guiding lights: recent developments in optogenetic control of biochemical signals.
Abstract:
Optogenetics arises from the innovative application of microbial opsins in mammalian neurons and has since been a powerful technology that fuels the advance of our knowledge in neuroscience. In recent years, there has been growing interest in designing optogenetic tools extendable to broader cell types and biochemical signals. To date, a variety of photoactivatable proteins (refers to induction of protein activity in contrast to fluorescence) have been developed based on the understanding of plant and microbial photoreceptors including phototropins, blue light sensors using flavin adenine dinucleotide proteins, cryptochromes, and phytochromes. Such tools offered researchers reversible, quantitative, and precise spatiotemporal control of enzymatic activity, protein-protein interaction, protein translocation, as well as gene transcription in cells and in whole animals. In this review, we will briefly introduce these photosensory proteins, describe recent developments in optogenetics, and compare and contrast different methods based on their advantages and limitations.
273.
Phosphorylation of phytochrome B inhibits light-induced signaling via accelerated dark reversion in Arabidopsis.
-
Medzihradszky, M
-
Bindics, J
-
Ádám, É
-
Viczián, A
-
Klement, É
-
Lorrain, S
-
Gyula, P
-
Mérai, Z
-
Fankhauser, C
-
Medzihradszky, KF
-
Kunkel, T
-
Schäfer, E
-
Nagy, F
Abstract:
The photoreceptor phytochrome B (phyB) interconverts between the biologically active Pfr (λmax = 730 nm) and inactive Pr (λmax = 660 nm) forms in a red/far-red-dependent fashion and regulates, as molecular switch, many aspects of light-dependent development in Arabidopsis thaliana. phyB signaling is launched by the biologically active Pfr conformer and mediated by specific protein-protein interactions between phyB Pfr and its downstream regulatory partners, whereas conversion of Pfr to Pr terminates signaling. Here, we provide evidence that phyB is phosphorylated in planta at Ser-86 located in the N-terminal domain of the photoreceptor. Analysis of phyB-9 transgenic plants expressing phospho-mimic and nonphosphorylatable phyB-yellow fluorescent protein (YFP) fusions demonstrated that phosphorylation of Ser-86 negatively regulates all physiological responses tested. The Ser86Asp and Ser86Ala substitutions do not affect stability, photoconversion, and spectral properties of the photoreceptor, but light-independent relaxation of the phyB(Ser86Asp) Pfr into Pr, also termed dark reversion, is strongly enhanced both in vivo and in vitro. Faster dark reversion attenuates red light-induced nuclear import and interaction of phyB(Ser86Asp)-YFP Pfr with the negative regulator PHYTOCHROME INTERACTING FACTOR3 compared with phyB-green fluorescent protein. These data suggest that accelerated inactivation of the photoreceptor phyB via phosphorylation of Ser-86 represents a new paradigm for modulating phytochrome-controlled signaling.
274.
Engineering of bacterial phytochromes for near-infrared imaging, sensing, and light-control in mammals.
Abstract:
Near-infrared light is favourable for imaging in mammalian tissues due to low absorbance of hemoglobin, melanin, and water. Therefore, fluorescent proteins, biosensors and optogenetic constructs for optimal imaging, optical readout and light manipulation in mammals should have fluorescence and action spectra within the near-infrared window. Interestingly, natural Bacterial Phytochrome Photoreceptors (BphPs) utilize the low molecular weight biliverdin, found in most mammalian tissues, as a photoreactive chromophore. Due to their near-infrared absorbance BphPs are preferred templates for designing optical molecular tools for applications in mammals. Moreover, BphPs spectrally complement existing genetically-encoded probes. Several BphPs were already developed into the near-infrared fluorescent variants. Based on the analysis of the photochemistry and structure of BphPs we suggest a variety of possible BphP-based fluorescent proteins, biosensors, and optogenetic tools. Putative design strategies and experimental considerations for such probes are discussed.
275.
A red/far-red light-responsive bi-stable toggle switch to control gene expression in mammalian cells.
-
Müller, K
-
Engesser, R
-
Metzger, S
-
Schulz, S
-
Kämpf, MM
-
Busacker, M
-
Steinberg, T
-
Tomakidi, P
-
Ehrbar, M
-
Nagy, F
-
Timmer, J
-
Zurbriggen, MD
-
Weber, W
Abstract:
Growth and differentiation of multicellular systems is orchestrated by spatially restricted gene expression programs in specialized subpopulations. The targeted manipulation of such processes by synthetic tools with high-spatiotemporal resolution could, therefore, enable a deepened understanding of developmental processes and open new opportunities in tissue engineering. Here, we describe the first red/far-red light-triggered gene switch for mammalian cells for achieving gene expression control in time and space. We show that the system can reversibly be toggled between stable on- and off-states using short light pulses at 660 or 740 nm. Red light-induced gene expression was shown to correlate with the applied photon number and was compatible with different mammalian cell lines, including human primary cells. The light-induced expression kinetics were quantitatively analyzed by a mathematical model. We apply the system for the spatially controlled engineering of angiogenesis in chicken embryos. The system's performance combined with cell- and tissue-compatible regulating red light will enable unprecedented spatiotemporally controlled molecular interventions in mammalian cells, tissues and organisms.