Showing 26 - 50 of 744 results
26.
Light-dependent modulation of protein localization and function in living bacteria cells.
-
McQuillen, R
-
Perez, AJ
-
Yang, X
-
Bohrer, CH
-
Smith, EL
-
Chareyre, S
-
Tsui, HT
-
Bruce, KE
-
Hla, YM
-
McCausland, JW
-
Winkler, ME
-
Goley, ED
-
Ramamurthi, KS
-
Xiao, J
Abstract:
Most bacteria lack membrane-enclosed organelles and rely on macromolecular scaffolds at different subcellular locations to recruit proteins for specific functions. Here, we demonstrate that the optogenetic CRY2-CIB1 system from Arabidopsis thaliana can be used to rapidly direct proteins to different subcellular locations with varying efficiencies in live Escherichia coli cells, including the nucleoid, the cell pole, the membrane, and the midcell division plane. Such light-induced re-localization can be used to rapidly inhibit cytokinesis in actively dividing E. coli cells. We further show that CRY2-CIBN binding kinetics can be modulated by green light, adding a new dimension of control to the system. Finally, we test this optogenetic system in three additional bacterial species, Bacillus subtilis, Caulobacter crescentus, and Streptococcus pneumoniae, providing important considerations for this system's applicability in bacterial cell biology.
27.
Spatiotemporal dissection of collective cell migration and tissue morphogenesis during development by optogenetics.
Abstract:
Collective cell migration and tissue morphogenesis play a variety of important roles in the development of many species. Tissue morphogenesis often generates mechanical forces that alter cell shapes and arrangements, resembling collective cell migration-like behaviors. Genetic methods have been widely used to study collective cell migration and its like behavior, advancing our understanding of these processes during development. However, a growing body of research shows that collective cell migration during development is not a simple behavior but is often combined with other cellular and tissue processes. In addition, different surrounding environments can also influence migrating cells, further complicating collective cell migration during development. Due to the complexity of developmental processes and tissues, traditional genetic approaches often encounter challenges and limitations. Thus, some methods with spatiotemporal control become urgent in dissecting collective cell migration and tissue morphogenesis during development. Optogenetics is a method that combines optics and genetics, providing a perfect strategy for spatiotemporally controlling corresponding protein activity in subcellular, cellular or tissue levels. In this review, we introduce the basic mechanisms underlying different optogenetic tools. Then, we demonstrate how optogenetic methods have been applied in vivo to dissect collective cell migration and tissue morphogenesis during development. Additionally, we describe some promising optogenetic approaches for advancing this field. Together, this review will guide and facilitate future studies of collective cell migration in vivo and tissue morphogenesis by optogenetics.
28.
Optogenetics Methods and Protocols
-
Haller, DJ
-
Castillo-Hair, SM
-
Tabor, JJ
-
Harmer, ZP
-
McClean, MN
-
Renzl, C
-
Mayer, G
-
Nakajima, T
-
Kuwasaki, Y
-
Yamamoto, S
-
Otabe, T
-
Sato, M
-
Shkarina, K
-
Broz, P
-
Jia Ying Toh, P
-
Kroll, KL
-
Sosnick, TR
-
Rock, RS
-
Tadimarri, VS
-
Sankaran, S
-
Lindner, F
-
Grossmann, S
-
Diepold, A
-
Knapp, F
-
Hogenkamp, F
-
Paik, S
-
Jaeger, K
-
Pietruszka, J
-
Drepper, T
-
Armbruster, A
-
Hörner, M
-
Weber, W
-
Jaeger, M
-
Vincentelli, R
-
Lasserre, R
-
Qiu, K
-
Xu, X
-
Zhang, K
-
Diao, J
-
Song, Y
-
Huang, P
-
Duan, L
-
Li, M
-
Park, BM
-
Li, Z
-
Huang, W
-
Sun, F
-
Gerrard, EJ
-
Tichy, A
-
Janovjak, H
-
Gangemi, CG
-
Wegner, SV
-
Raab, CA
Abstract:
This volume explores the latest advancements in the field of optogenetics and how it uses cellular light-sensing components and genetic engineering to control proteins and biological processes. The book chapters are organized into four parts. Part One focuses on intracellular optogenetic components for control of specific cell functions; Part Two looks at externally supplied light regulators that do not require genetic manipulation of target cells; Part Three highlights optogenetic control of organelles, and Part Four introduces technical tools required for light induction in optogenetic experiments, as well as a method for performing and analyzing optogenetic cell-cell adhesion. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and practical, Optogenetics: Methods and Protocols is a valuable resource to help researchers understand and apply the concepts of optogenetics and the underlying bioengineering principles, and establish the required technical light-illumination setups for administering light inputs and analysis of experimental outcomes.
29.
Recent advances in spatiotemporal control of the CRISPR/Cas9 system.
Abstract:
The CRISPR/Cas9 gene-editing technology, derived from the adaptive immune mechanisms of bacteria, has demonstrated remarkable advantages in fields such as gene function research and the treatment of genetic diseases due to its simplicity in design, precise targeting, and ease of use. Despite challenges such as off-target effects and cytotoxicity, effective spatiotemporal control strategies have been achieved for the CRISPR/Cas9 system through precise regulation of Cas9 protein activity as well as engineering of guide RNAs (gRNAs). This review provides a comprehensive analysis of the core components and functional mechanisms underlying the CRISPR/Cas9 system, highlights recent advancements in spatiotemporal control strategies, and discusses future directions for development.
30.
The current landscape of optogenetics for the enhancement of adoptive T-cell therapy.
Abstract:
Immunotherapy, the medicinal modulation of a host's immune response to better combat a pathogen or disease, has transformed cancer treatments in recent decades. T-cells, an important component of the adaptive immune system, are further paramount for therapy success. Recent immunotherapeutic modalities have therefore more frequently targeted T-cells for cancer treatments and other pathologies and are termed adoptive T-cell (ATC) therapies. ATC therapies characterize various types of immunotherapies but predominantly fall into three established techniques: tumour-infiltrating lymphocyte, chimeric antigen receptor T-cell, and engineered T-cell receptor therapies. Despite promising clinical results, all ATC therapy types fall short in providing long-term sustained tumour clearance while being particularly ineffective against solid tumours, with substantial developments aiming to understand and prevent the typical drawbacks of ATC therapy. Optogenetics is a relatively recent development, incorporating light-sensitive protein domains into cells or tissues of interest to optically tune specific biological processes. Optogenetic manipulation of immunological functions is rapidly becoming an investigative tool in immunology, with light-sensitive systems now being used to optimize many cellular therapeutic modalities and ATC therapies. This review focuses on how optogenetic approaches are currently utilized to improve ATC therapy in clinical settings by deepening our understanding of the molecular rationale behind therapy success. Moreover, this review further critiques current immuno-optogenetic systems and speculates on the expansion of recent developments, enhancing current ATC-based therapeutic modalities to pave the way for clinical progress.
31.
Optogenetic control of receptor-mediated growth cone dynamics in neurons.
Abstract:
Development of neuronal connections is spatially and temporally controlled by extracellular cues which often activate their cognate cell surface receptors and elicit localized cellular responses. Here, we demonstrate the use of an optogenetic tool to activate receptor signaling locally to induce actin-mediated growth cone remodeling in neurons. Based on the light-induced interaction between Cryptochrome 2 (CRY2) and CIB1, we generated a bicistronic vector to co-expresses CRY2 fused to the intracellular domain of a guidance receptor and a membrane-anchored CIB1. When expressed in primary neurons, activation of the growth inhibitory PlexA4 receptor induced growth cone collapse, while activation of the growth stimulating TrkA receptor increased growth cone size. Moreover, local activation of either receptor not only elicited the predicted response in light-activated growth cones but also an opposite response in neighboring no-light-exposed growth cones of the same neuron. Finally, this tool was used to reorient growth cones toward or away from the site of light activation and to stimulate local actin polymerization for branch initiation along axonal shafts. These studies demonstrate the use of an optogenetic tool for precise spatial and temporal control of receptor signaling in neurons and support its future application in investigating cellular mechanisms of neuronal development and plasticity.
32.
Proteomic and phosphoproteomic analyses reveal that TORC1 is reactivated by pheromone signaling during sexual reproduction in fission yeast.
Abstract:
Starvation, which is associated with inactivation of the growth-promoting TOR complex 1 (TORC1), is a strong environmental signal for cell differentiation. In the fission yeast Schizosaccharomyces pombe, nitrogen starvation has distinct physiological consequences depending on the presence of mating partners. In their absence, cells enter quiescence, and TORC1 inactivation prolongs their life. In presence of compatible mates, TORC1 inactivation is essential for sexual differentiation. Gametes engage in paracrine pheromone signaling, grow towards each other, fuse to form the diploid zygote, and form resistant, haploid spore progenies. To understand the signaling changes in the proteome and phospho-proteome during sexual reproduction, we developed cell synchronization strategies and present (phospho-)proteomic data sets that dissect pheromone from starvation signals over the sexual differentiation and cell–cell fusion processes. Unexpectedly, these data sets reveal phosphorylation of ribosomal protein S6 during sexual development, which we establish requires TORC1 activity. We demonstrate that TORC1 is re-activated by pheromone signaling, in a manner that does not require autophagy. Mutants with low TORC1 re-activation exhibit compromised mating and poorly viable spores. Thus, while inactivated to initiate the mating process, TORC1 is reactivated by pheromone signaling in starved cells to support sexual reproduction.
33.
Environment signal dependent biocontainment systems for engineered organisms: Leveraging triggered responses and combinatorial systems.
Abstract:
As synthetic biology advances, the necessity for robust biocontainment strategies for genetically engineered organisms (GEOs) grows increasingly critical to mitigate biosafety risks related to their potential environmental release. This paper aims to evaluate environment signal-dependent biocontainment systems for engineered organisms, focusing specifically on leveraging triggered responses and combinatorial systems. There are different types of triggers—chemical, light, temperature, and pH—this review illustrates how these systems can be designed to respond to environmental signals, ensuring a higher safety profile. It also focuses on combinatorial biocontainment to avoid consequences of unintended GEO release into an external environment. Case studies are discussed to demonstrate the practical applications of these systems in real-world scenarios.
34.
Near-Infrared Optogenetic Nanosystem for Spatiotemporal Control of CRISPR-Cas9 Gene Editing and Synergistic Photodynamic Therapy.
Abstract:
Controlling CRISPR/Cas9 gene editing at the spatiotemporal resolution level, especially for in vivo applications, remains a great challenge. Here, we developed a near-infrared (NIR) light-activated nanophotonic system (UCPP) for controlled CRISPR-Cas9 gene editing and synergistic photodynamic therapy (PDT). Lanthanide-doped upconversion nanoparticles are not only employed as carriers for intracellular plasmid delivery but also serve as the nanotransducers to convert NIR light (980 nm) into visible light with emission at 460 and 650 nm, which could result in simultaneous activation of gene editing and PDT processes, respectively. Such unique design not only achieves light-controlled precise gene editing of hypoxia-inducible factor 1α with minimal off-target effect, which effectively ameliorates the hypoxic state at tumor sites, but also facilitates the deep-seated PDT process with synergistic antitumor effect. This optogenetically activatable CRISPR-Cas9 nanosystem holds great potential for spatially controlled in vivo gene editing and targeted cancer therapy.
35.
A simplified two-plasmid system for orthogonal control of mammalian gene expression using light-activated CRISPR effector.
Abstract:
Background Optogenetic systems use light-responsive proteins to control gene expression with the “flip of a switch”. One such tool is the light activated CRISPR effector (LACE) system. Its ability to regulate gene expression in a tunable, reversible, and spatially resolved manner makes it attractive for many applications. However, LACE relies on delivery of four separate components on individual plasmids, which can limit its use. Here, we optimize LACE to reduce the number of plasmids needed to deliver all four components.
Results The two-plasmid LACE (2pLACE) system combines the four components of the original LACE system into two plasmids. Following construction, the behavior of 2pLACE was rigorously tested using optogenetic control of enhanced green fluorescent protein (eGFP) expression as a reporter. We optimized the ratio of the two plasmids, measured activation as a function of light intensity, and determined the frequency of the light to activate the maximum fluorescence. Overall, the 2pLACE system showed a similar dynamic range, tunability, and activation kinetics as the original four plasmid LACE (4pLACE) system. Interestingly, 2pLACE also had less variability in activation signal compared to 4pLACE.
Conclusions This simplified system for optogenetics will be more amenable to biotechnology applications where variability needs to be minimized. By optimizing the LACE system to use fewer plasmids, 2pLACE becomes a flexible tool in multiple research applications.
36.
Short RNA chaperones promote aggregation-resistant TDP-43
conformers to mitigate neurodegeneration.
-
Copley, KE
-
Mauna, JC
-
Danielson, H
-
Ngo, M
-
Xie, L
-
Smirnov, A
-
Davis, M
-
Mayne, L
-
Linsenmeier, M
-
Rubien, JD
-
Portz, B
-
Lee, BL
-
Odeh, HM
-
Hallegger, M
-
Ule, J
-
Pasinelli, P
-
Poon, Y
-
Fawzi, NL
-
Black, BE
-
Donnelly, CJ
-
Jensen, BK
-
Shorter, J
Abstract:
Aberrant aggregation of the prion-like, RNA-binding protein TDP-43 underlies
several debilitating neurodegenerative proteinopathies, including amyotrophic lateral sclerosis
(ALS). Here, we define how short, specific RNAs antagonize TDP-43 aggregation. Short,
specific RNAs engage and stabilize the TDP-43 RNA-recognition motifs, which allosterically
destabilizes a conserved helical region in the prion-like domain, thereby promoting aggregationresistant conformers. By mining sequence space, we uncover short RNAs with enhanced activity
against TDP-43 and diverse disease-linked variants. The solubilizing activity of enhanced short
RNA chaperones corrects aberrant TDP-43 phenotypes in optogenetic models and ALS patientderived neurons. Remarkably, an enhanced short RNA chaperone mitigates TDP-43
proteinopathy and neurodegeneration in mice. Our studies reveal mechanisms of short RNA
chaperones and pave the way for the development of short RNA therapeutics for fatal TDP-43
proteinopathies.
37.
Illuminating the future of food microbial control: From optical tools to Optogenetic tools.
Abstract:
Light as an environmental signal can effectively regulate various biological processes in microbial systems. Optical and optogenetic tools are able to utilize light for precise control methods with minimal interference. Recently, research on these tools has extended to the field of microbiology. Distinguishing from existing reviews, this review narrows the scope of application into food sector, focusing on advances in optical and optogenetic tools for microbial control, including optical tools targeting pathogenic or probiotic bacteria for non-thermal sterilization, antimicrobial photodynamic therapy, or photobiomodulation, combined with nanomaterials as photosensors for food analysis. As well as using optogenetic tools for more convenient and precise control in food production processes, covering reversible induction, metabolic flux regulation, biofilm formation, and inhibition. These tools offer new solutions to goals that cannot be achieved by traditional methods, and they are still maturing to explore other uses in the food field.
38.
Inducing aggresome and stable tau aggregation in Neuro2a cells with an optogenetic tool.
-
Sakuragi, S
-
Uchida, T
-
Kato, N
-
Zhao, B
-
Takahashi, T
-
Hattori, A
-
Sakata, Y
-
Soeda, Y
-
Takashima, A
-
Yoshimura, H
-
Matsumoto, G
-
Bannai, H
Abstract:
Abstract
Tauopathy is a spectrum of diseases characterized by fibrillary tau aggregate formation in neurons and glial cells in the brain. Tau aggregation originates in the brainstem and entorhinal cortex and then spreads throughout the brain in Alzheimer’s disease (AD), which is the most prevalent type of tauopathy. Understanding the mechanism by which locally developed tau pathology propagates throughout the brain is crucial for comprehending AD pathogenesis. Therefore, a novel model of tau pathology that artificially induces tau aggregation in targeted cells at specific times is essential. This study describes a novel optogenetic module, OptoTau, which is a human tau with the P301L mutation fused with a photosensitive protein CRY2olig, inducing various forms of tau according to the temporal pattern of blue light illumination pattern. Continuous blue light illumination for 12 h to Neuro2a cells that stably express OptoTau (OptoTauKI cells) formed clusters along microtubules, many of which eventually accumulated in aggresomes.
Conversely, methanol-resistant tau aggregation was formed when alternating light exposure and darkness in 30-min cycles for 8 sets per day were repeated over 8 days. Methanol-resistant tau was induced more rapidly by repeating 5-min illumination followed by 25-min darkness over 24 h. These results indicate that OptoTau induced various tau aggregation stages based on the temporal pattern of blue light exposure. Thus, this technique exhibits potential as a novel approach to developing specific tau aggregation in targeted cells at desired time points.
39.
Optimum blue light exposure: a means to increase cell-specific productivity in Chinese hamster ovary cells.
Abstract:
Research for biopharmaceutical production processes with mammalian cells steadily aims to enhance the cell-specific productivity as a means for optimizing total productivities of bioreactors. Whereas current technologies such as pH, temperature, and osmolality shift require modifications of the cultivation medium, the use of optogenetic switches in recombinant producer cells might be a promising contact-free alternative. However, the proper application of optogenetically engineered cells requires a detailed understanding of basic cellular responses of cells that do not yet contain the optogenetic switches. The knowhow of ideal light exposure to enable the optimum use of related approaches is missing so far. Consequently, the current study set out to find optimum conditions for IgG1 producing Chinese hamster ovary (CHO) cells which were exposed to blue LED light. Growth characteristics, cell-specific productivity using enzyme-linked immunosorbent assay, as well as cell cycle distribution using flow cytometry were analyzed. Whereas too harsh light exposure causes detrimental growth effects that could be compensated with antioxidants, a surprising boost of cell-specific productivity by 57% occurred at optimum high light doses. The increase coincided with an increased number of cells in the G1 phase of the cell cycle after 72 h of illumination. The results present a promising new approach to boost biopharmaceutical productivity of mammalian cells simply by proper light exposure without any further optogenetic engineering. KEY POINTS: • Blue LED light hinders growth in CHO DP-12 cells • Antioxidants protect to a certain degree from blue light effects • Illumination with blue LED light raises cell-specific productivity.
40.
Blue Light-Induced, Dosed Protein Expression of Active BDNF in Human Cells Using the Optogenetic CRY2/CIB System.
-
Christoffers, S
-
Wichert, N
-
Wiebe, E
-
Torres-Mapa, ML
-
Goblet, M
-
Harre, J
-
Kaiser, O
-
Wahalla, MN
-
Blume, H
-
Heisterkamp, A
-
Warnecke, A
-
Blume, C
Abstract:
The use of optogenetic tools offers an excellent method for spatially and temporally regulated gene and protein expression in cell therapeutic approaches. This could be useful as a concomitant therapeutic measure, especially in small body compartments such as the inner ear, for example, during cochlea implantation, to enhance neuronal cell survival and function. Here, we used the blue light activatable CRY2/CIB system to induce transcription of brain-derived neurotrophic factor (BDNF) in human cells. Transfection with three plasmids, encoding for the optogenetic system and the target, as well as illumination protocols were optimized with luciferase as a reporter to achieve the highest protein expression in human embryonic kidney cells 293. Illumination was performed either with a light-emitting diode or with a scanning laser setup. The optimized protocols were applied for the production of BDNF. We could demonstrate a 64.7-fold increase of BNDF expression upon light induction compared to the basal level. Light-induced BDNF was biologically active and enhanced survival and neurite growth of spiral ganglion neurons. The optogenetic approach can be transferred to autologous cell systems, such as bone marrow-derived mesenchymal stem cells, and thus represents the first optogenetic neurotrophic therapy for the inner ear.
41.
In vivo regulation of an endogenously-tagged protein by a light-regulated kinase.
Abstract:
Post-translational modifications (PTMs) are indispensable modulators of protein activity. Most cellular behaviours, from cell division to cytoskeletal organization, are controlled by PTMs, their miss-regulation being associated with a plethora of human diseases. Traditionally, the role of PTMs has been studied employing biochemical techniques. However, these approaches fall short when studying PTM dynamics in vivo. In recent years, functionalized protein binders have allowed the post-translational modification of endogenous proteins by bringing an enzymatic domain in close proximity to the protein they recognize. To date, most of these methods lack the temporal control necessary to understand the complex effects triggered by PTMs. In this study, we have developed a method to phosphorylate endogenous Myosin in a light-inducible manner. The method relies both on nanobody-targeting and light-inducible activation in order to achieve both tight specificity and temporal control. We demonstrate that this technology is able to disrupt cytoskeletal dynamics during Drosophila embryonic development. Together, our results highlight the potential of combining optogenetics and protein binders for the study of the proteome in multicellular systems.
42.
The CDKL5 kinase undergoes liquid-liquid phase separation driven by a serine-rich C-terminal region and impaired by neurodevelopmental disease-related truncations.
-
Dell'Oca, M
-
Boggio Bozzo, S
-
Vaglietti, S
-
Gurgone, A
-
Cardinale, V
-
Ragazzini, G
-
Alessandrini, A
-
Colnaghi, L
-
Ghirardi, M
-
Giustetto, M
-
Fiumara, F
Abstract:
Mutations of the cyclin-dependent kinase-like 5 (CDKL5) gene, which encodes a serine/threonine protein kinase, can cause the CDKL5 deficiency disorder (CDD), a severe neurodevelopmental disease characterized by epileptic encephalopathy and neurocognitive impairment. The CDKL5 kinase consists of a catalytic N-terminal domain (NTD) and a less characterized C-terminal domain (CTD). Numerous disease-related mutations truncate CDKL5, leaving the NTD intact while variably shortening the CTD, which highlights the importance of the CTD for CDKL5 function. By systematically analyzing CDKL5 compositional features and evolutionary dynamics, we found that the CTD is a low-complexity region (LCR) highly enriched in serine residues and with a high propensity to undergo liquid-liquid phase separation (LLPS), a biophysical process of condensation controlling protein localization and function. Using a combination of super-resolution imaging, electron microscopy, and molecular and cellular approaches, including optogenetic LLPS induction, we discovered that CDKL5 undergoes LLPS, predominantly driven by its CTD, forming membraneless condensates in neuronal and non-neuronal cells. A CTD internal fragment (CTIF) plays a pivotal LLPS-promoting role, along with the distal portion of the protein. Indeed, two disease-related truncating mutations (S726X and R781X), eliding variable portions of the CTIF, significantly impair LLPS. This impairment is paralleled at the functional level by a reduction in the CDKL5-dependent phosphorylation of EB2, a known CDKL5 target. These findings demonstrate that CDKL5 undergoes LLPS, driven by a CTD region elided by most disease-related truncating mutations. Its loss––through the impairment of CDKL5 LLPS and functional activity––may play a key role in the molecular pathogenesis of CDD.
43.
Charge-neutralized polyethylenimine-lipid nanoparticles for gene transfer to human embryonic stem cells.
Abstract:
Gene delivery is fundamentally crucial for the genetic manipulation of stem cells. Here, we present a straightforward approach to create a library of charge-neutralized polyethylenimine (PEI)-lipid nanoparticles designed for stem cell transfection. These lipid nanoparticles were formulated using small, branched PEI and lipidic anhydrides. Remarkably, over 15% of the lipid nanoparticles demonstrated high transfection efficiency across various cell types, surpassing the efficiency of both Lipofectamine 2000 and FuGENE HD. A structure-activity analysis indicated that the length and ratio of hydrophobic alkyl substitutions were critical parameters for efficient gene delivery. Notably, the transfection efficiency was higher than that of the original cation PEI. Our optimized PEI-lipid system enabled highly effective plasmid DNA delivery and successfully co-transferred two plasmid DNAs into difficult-to-transfect human embryonic stem cells (hESCs), facilitating optogenetic manipulation within these cells.
44.
Src kinase slows collective rotation of confined epithelial cell monolayers.
Abstract:
Collective cell migration is key during development, wound healing, and metastasis and relies on coordinated cell behaviors at the group level. Src kinase is a key signalling protein for the physiological functions of epithelia, as it regulates many cellular processes, including adhesion, motility, and mechanotransduction. Its overactivation is associated with cancer aggressiveness. Here, we take advantage of optogenetics to precisely control Src activation in time and show that its pathological-like activation slows the collective rotation of epithelial cells confined into circular adhesive patches. We interpret velocity, force, and stress data during period of non-activation and period of activation of Src thanks to a hydrodynamic description of the cell assembly as a polar active fluid. Src activation leads to a 2-fold decrease in the ratio of polar angle to friction, which could result from increased adhesiveness at the cell-substrate interface. Measuring internal stress allows us to show that active stresses are subdominant compared to traction forces. Our work reveals the importance of fine-tuning the level of Src activity for coordinated collective behaviors.
45.
Spatiotemporal control of subcellular O-GlcNAc signaling using Opto-OGT.
-
Ong, Q
-
Lim, LTR
-
Goh, C
-
Liao, Y
-
Chan, SE
-
Lim, CJY
-
Kam, V
-
Yap, J
-
Tseng, T
-
Desrouleaux, R
-
Wang, LC
-
Ler, SG
-
Lim, SL
-
Kim, SY
-
Sobota, RM
-
Bennett, AM
-
Han, W
-
Yang, X
Abstract:
The post-translational modification of intracellular proteins through O-linked β-N-acetylglucosamine (O-GlcNAc) is a conserved regulatory mechanism in multicellular organisms. Catalyzed by O-GlcNAc transferase (OGT), this dynamic modification has an essential role in signal transduction, gene expression, organelle function and systemic physiology. Here, we present Opto-OGT, an optogenetic probe that allows for precise spatiotemporal control of OGT activity through light stimulation. By fusing a photosensitive cryptochrome protein to OGT, Opto-OGT can be robustly and reversibly activated with high temporal resolution by blue light and exhibits minimal background activity without illumination. Transient activation of Opto-OGT results in mTORC activation and AMPK suppression, which recapitulate nutrient-sensing signaling. Furthermore, Opto-OGT can be customized to localize to specific subcellular sites. By targeting OGT to the plasma membrane, we demonstrate the downregulation of site-specific AKT phosphorylation and signaling outputs in response to insulin stimulation. Thus, Opto-OGT is a powerful tool for defining the role of O-GlcNAcylation in cell signaling and physiology.
46.
Epithelial Folding Through Local Degradation of an Elastic Basement Membrane Plate.
Abstract:
Epithelia are polarized layers of cells that line the outer and inner surfaces of organs. At the basal side, the epithelial cell layer is supported by a basement membrane, which is a thin polymeric layer of self-assembled extracellular matrix (ECM) that tightly adheres to the basal cell surface. Proper shaping of epithelial layers is an important prerequisite for the development of healthy organs during the morphogenesis of an organism. Experimental evidence suggests that local degradation of the basement membrane is one of the mechanisms that can drive epithelial folding. However, how folding emerges in the absence of tissue growth remains elusive. Here, we present a coarse-grained plate theory model of the basement membrane that assumes force balance between i) cell-transduced active forces and ii) deformation-induced elastic forces. We verify key assumptions of this model through experiments in the Drosophila wing disc epithelium and demonstrate that the model can explain the emergence of outward epithelial folds upon local plate degradation. The model accounts for local degradation of the basement membrane as a mechanism for the generation of epithelial folds in the absence of epithelial growth.
47.
Assays to measure small molecule Hsp70 agonist activity in vitro and in vivo.
-
Shapiro, O
-
Woods, C
-
Gleixner, AM
-
Sannino, S
-
Ngo, M
-
McDaniels, MD
-
Wipf, P
-
Hukriede, NA
-
Donnelly, CJ
-
Brodsky, JL
Abstract:
Hsp70 prevents protein aggregation and is cytoprotective, but sustained Hsp70 overexpression is problematic. Therefore, we characterized small molecule agonists that augment Hsp70 activity. Because cumbersome assays were required to assay agonists, we developed cell-based and in vivo assays in which disease-associated consequences of Hsp70 activation can be quantified. One assay uses an optogenetic system in which the formation of TDP-43 inclusions can be controlled, and the second assay employs a zebrafish model for acute kidney injury (AKI). These complementary assays will facilitate future work to identify new Hsp70 agonists as well as optimized agonist derivatives.
48.
Dysfunctional RNA binding protein induced neurodegeneration is attenuated by inhibition of the integrated stress response.
Abstract:
Dysfunction of the RNA binding protein heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) contributes to neurodegeneration, the primary cause of permanent disability in multiple sclerosis (MS). To better understand the role of hnRNP A1 dysfunction in the pathogenesis of neurodegeneration, we utilized optogenetics-driven hnRNP A1 clustering to model its dysfunction in neuron-like differentiated Neuro-2A cells. hnRNP A1 clustering activates the integrated stress response (ISR) and results in a neurodegenerative phenotype marked by decreased neuronal protein translation and neurite loss. Small molecule inhibition of the ISR with either PERKi (GSK2606414) or ISRIB (integrated stress response inhibitor) attenuated both the decrease in neuronal translation and neurite loss, without affecting hnRNP A1 clustering. We then confirmed a strong association between hnRNP A1 clustering and ISR activation in neurons from MS brains. These data illustrate that hnRNP A1 dysfunction promotes neurodegeneration by activation of the ISR in vitro and in vivo, thus revealing a novel therapeutic target to reduce neurodegeneration and subsequent disability in MS.
49.
Drug Discovery for Diseases with High Unmet Need Through Perturbation of Biomolecular Condensates.
Abstract:
Biomolecular condensates (BMCs), play significant roles in organizing cellular functions in the absence of membranes through phase separation events involving RNA, proteins, and RNA-protein complexes. These membrane-less organelles form dynamic multivalent weak interactions, often involving intrinsically disordered proteins or regions (IDPs/IDRs). However, the nature of these crucial interactions, how most of these organelles are organized and are functional, remains unknown. Aberrant condensates have been implicated in neurodegenerative diseases and various cancers, presenting novel therapeutic opportunities for small molecule condensate modulators. Recent advancements in optogenetic technologies, particularly Corelet, enable precise manipulation of BMC dynamics within living cells, facilitating high-throughput screening for small molecules that target these complex structures. By elucidating the molecular mechanisms governing BMC formation and function, this innovative approach holds promise to unlock therapeutic strategies against previously "undruggable" protein targets, paving the way for effective interventions in disease.
50.
CELF2 promotes tau exon 10 inclusion via hinge domain-mediated nuclear condensation.
Abstract:
Alternative splicing is a fundamental process that contributes to the functional diversity and complexity of proteins. The regulation of each alternative splicing event involves the coordinated action of multiple RNA-binding proteins, creating a diverse array of alternatively spliced products. Dysregulation of alternative splicing is associated with various diseases, including neurodegeneration. Here we demonstrate that CELF2, a splicing regulator and a GWAS-identified risk factor for Alzheimer’s disease, binds to mRNAs associated with neurodegenerative diseases, with a specific interaction observed in the intron adjacent to exon 10 on Tau mRNA. Loss of CELF2 in the mouse brain results in a decreased inclusion of Tau exon 10, leading to a reduced 4R:3R ratio. Further exploration shows that the hinge domain of CELF2 possesses an intrinsically disordered region (IDR), which mediates CELF2 condensation and function. The functionality of IDR in regulating CELF2 function is underscored by its substitutability with IDRs from FUS and TAF15. Using TurboID we identified proteins that interact with CELF2 through its IDR. We revealed that CELF2 co-condensate with NOVA2 and SFPQ, which coordinate with CELF2 to regulate the alternative splicing of Tau exon 10. A negatively charged residue within the IDR (D388), which is conserved among CELF proteins, is critical for CELF2 condensate formation, interactions with NOVA2 and SFPQ, and function in regulating tau exon 10 splicing. Our data allow us to propose that CELF2 regulates Tau alternative splicing by forming condensates through its IDR with other splicing factors, and that the composition of the proteins within the condensates determines the outcomes of alternative splicing events.