Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 526 - 550 of 1626 results
526.

Light-induced fermenter production of derivatives of the sweet protein monellin is maximized in prestationary Saccharomyces cerevisiae cultures.

blue CRY2/CIB1 S. cerevisiae Transgene expression
Biotechnol J, 28 Apr 2022 DOI: 10.1002/biot.202100676 Link to full text
Abstract: Optogenetics has great potential for biotechnology and metabolic engineering due to the cost-effective control of cellular activities. The usage of optogenetics techniques for the biosynthesis of bioactive molecules ensures reduced costs and enhanced regulatory possibilities. This requires development of efficient methods for light-delivery during a production process in a fermenter. Here, we benchmarked the fermenter production of a low-caloric sweetener in Saccharomyces cerevisiae with optogenetic tools against the production in small scale cell culture flasks. An expression system based on the light-controlled interaction between Cry2 and Cib1 was used for sweet-protein production. Optimization of the fermenter process was achieved by increasing the light-flux during the production phase to circumvent shading by yeast cells at high densities. Maximal amounts of the sweet-protein were produced in a pre-stationary growth phase, whereas at later stages, a decay in protein abundance was observable. Our investigation showcases the upscaling of an optogenetic production process from small flasks to a bioreactor. Optogenetic-controlled production in a fermenter is highly cost-effective due to the cheap inducer and therefore a viable alternative to chemicals for a process that requires an induction step.
527.

Engineering Light-Control in Biology.

blue cyan green near-infrared red UV BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Front Bioeng Biotechnol, 28 Apr 2022 DOI: 10.3389/fbioe.2022.901300 Link to full text
Abstract: Unraveling the transformative power of optogenetics in biology requires sophisticated engineering for the creation and optimization of light-regulatable proteins. In addition, diverse strategies have been used for the tuning of these light-sensitive regulators. This review highlights different protein engineering and synthetic biology approaches, which might aid in the development and optimization of novel optogenetic proteins (Opto-proteins). Focusing on non-neuronal optogenetics, chromophore availability, general strategies for creating light-controllable functions, modification of the photosensitive domains and their fusion to effector domains, as well as tuning concepts for Opto-proteins are discussed. Thus, this review shall not serve as an encyclopedic summary of light-sensitive regulators but aims at discussing important aspects for the engineering of light-controllable proteins through selected examples.
528.

PPARγ phase separates with RXRα at PPREs to regulate target gene expression.

blue CRY2olig HEK293T NIH/3T3 Organelle manipulation
Cell Discov, 26 Apr 2022 DOI: 10.1038/s41421-022-00388-0 Link to full text
Abstract: Peroxisome proliferator-activated receptor (PPAR)-γ is a key transcription activator controlling adipogenesis and lipid metabolism. PPARγ binds PPAR response elements (PPREs) as the obligate heterodimer with retinoid X receptor (RXR) α, but exactly how PPARγ orchestrates the transcriptional response is unknown. This study demonstrates that PPARγ forms phase-separated droplets in vitro and solid-like nuclear condensates in cell, which is intriguingly mediated by its DNA binding domain characterized by the zinc finger motif. Furthermore, PPARγ forms nuclear condensates at PPREs sites through phase separation to compartmentalize its heterodimer partner RXRα to initiate PPARγ-specific transcriptional activation. Finally, using an optogenetic approach, the enforced formation of PPARγ/RXRα condensates leads to preferential enrichment at PPREs sites and significantly promotes the expression of PPARγ target genes. These results define a novel mechanism by which PPARγ engages the phase separation principles for efficient and specific transcriptional activation.
529.

Synthetic developmental biology: New tools to deconstruct and rebuild developmental systems.

blue Cryptochromes LOV domains Review
Semin Cell Dev Biol, 26 Apr 2022 DOI: 10.1016/j.semcdb.2022.04.013 Link to full text
Abstract: Technological advances have driven many recent advances in developmental biology. Light sheet imaging can reveal single-cell dynamics in living three-dimensional tissues, whereas single-cell genomic methods open the door to a complete catalogue of cell types and gene expression states. An equally powerful but complementary set of approaches are also becoming available to define development processes from the bottom up. These synthetic approaches aim to reconstruct the minimal developmental patterns, signaling processes, and gene networks that produce the basic set of developmental operations: spatial polarization, morphogen interpretation, tissue movement, and cellular memory. In this review we discuss recent approaches at the intersection of synthetic biology and development, including synthetic circuits to deliver and record signaling stimuli and synthetic reconstitution of pattern formation on multicellular scales.
530.

Cell division in tissues enables macrophage infiltration.

blue CRY2/CIB1 D. melanogaster in vivo Control of cytoskeleton / cell motility / cell shape
Science, 21 Apr 2022 DOI: 10.1126/science.abj0425 Link to full text
Abstract: Cells migrate through crowded microenvironments within tissues during normal development, immune response, and cancer metastasis. Although migration through pores and tracks in the extracellular matrix (ECM) has been well studied, little is known about cellular traversal into confining cell-dense tissues. We find that embryonic tissue invasion by Drosophila macrophages requires division of an epithelial ectodermal cell at the site of entry. Dividing ectodermal cells disassemble ECM attachment formed by integrin-mediated focal adhesions next to mesodermal cells, allowing macrophages to move their nuclei ahead and invade between two immediately adjacent tissues. Invasion efficiency depends on division frequency, but reduction of adhesion strength allows macrophage entry independently of division. This work demonstrates that tissue dynamics can regulate cellular infiltration.
531.

Design and engineering of light-sensitive protein switches.

blue green near-infrared red Cobalamin-binding domains Cryptochromes LOV domains Phytochromes Review
Curr Opin Struct Biol, 20 Apr 2022 DOI: 10.1016/j.sbi.2022.102377 Link to full text
Abstract: Engineered, light-sensitive protein switches are used to interrogate a broad variety of biological processes. These switches are typically constructed by genetically fusing naturally occurring light-responsive protein domains with functional domains from other proteins. Protein activity can be controlled using a variety of mechanisms including light-induced colocalization, caging, and allosteric regulation. Protein design efforts have focused on reducing background signaling, maximizing the change in activity upon light stimulation, and perturbing the kinetics of switching. It is common to combine structure-based modeling with experimental screening to identify ideal fusion points between domains and discover point mutations that optimize switching. Here, we introduce commonly used light-sensitive domains and summarize recent progress in using them to regulate protein activity.
532.

Optogenetic activators of apoptosis, necroptosis, and pyroptosis.

blue CRY2olig Caco-2 HaCaT HEK293T HeLa HT-29 MCF7 RAW264.7 U-937 zebrafish in vivo Cell death
J Cell Biol, 14 Apr 2022 DOI: 10.1083/jcb.202109038 Link to full text
Abstract: Targeted and specific induction of cell death in an individual or groups of cells hold the potential for new insights into the response of tissues or organisms to different forms of death. Here, we report the development of optogenetically controlled cell death effectors (optoCDEs), a novel class of optogenetic tools that enables light-mediated induction of three types of programmed cell death (PCD)—apoptosis, pyroptosis, and necroptosis—using Arabidopsis thaliana photosensitive protein Cryptochrome-2. OptoCDEs enable a rapid and highly specific induction of PCD in human, mouse, and zebrafish cells and are suitable for a wide range of applications, such as sub-lethal cell death induction or precise elimination of single cells or cell populations in vitro and in vivo. As the proof-of-concept, we utilize optoCDEs to assess the differences in neighboring cell responses to apoptotic or necrotic PCD, revealing a new role for shingosine-1-phosphate signaling in regulating the efferocytosis of the apoptotic cell by epithelia.
533.

Regulating Bacterial Behavior within Hydrogels of Tunable Viscoelasticity.

blue YtvA E. coli Transgene expression
Adv Sci (Weinh), 11 Apr 2022 DOI: 10.1002/advs.202106026 Link to full text
Abstract: Engineered living materials (ELMs) are a new class of materials in which living organism incorporated into diffusive matrices uptake a fundamental role in material's composition and function. Understanding how the spatial confinement in 3D can regulate the behavior of the embedded cells is crucial to design and predict ELM's function, minimize their environmental impact and facilitate their translation into applied materials. This study investigates the growth and metabolic activity of bacteria within an associative hydrogel network (Pluronic-based) with mechanical properties that can be tuned by introducing a variable degree of acrylate crosslinks. Individual bacteria distributed in the hydrogel matrix at low density form functional colonies whose size is controlled by the extent of permanent crosslinks. With increasing stiffness and elastic response to deformation of the matrix, a decrease in colony volumes and an increase in their sphericity are observed. Protein production follows a different pattern with higher production yields occurring in networks with intermediate permanent crosslinking degrees. These results demonstrate that matrix design can be used to control and regulate the composition and function of ELMs containing microorganisms. Interestingly, design parameters for matrices to regulate bacteria behavior show similarities to those elucidated for 3D culture of mammalian cells.
534.

Upregulated flotillins and sphingosine kinase 2 derail AXL vesicular traffic to promote epithelial-mesenchymal transition.

blue CRY2/CIB1 MCF10A
J Cell Sci, 8 Apr 2022 DOI: 10.1242/jcs.259178 Link to full text
Abstract: Altered endocytosis and vesicular trafficking are major players during tumorigenesis. Flotillin overexpression, a feature observed in many invasive tumors and identified as a marker of poor prognosis, induces a deregulated endocytic and trafficking pathway called upregulated flotillin-induced trafficking (UFIT). Here, we found that in non-tumoral mammary epithelial cells, induction of the UFIT pathway promotes epithelial-to-mesenchymal transition (EMT) and accelerates the endocytosis of several transmembrane receptors, including AXL, in flotillin-positive late endosomes. AXL overexpression, frequently observed in cancer cells, is linked to EMT and metastasis formation. In flotillin-overexpressing non-tumoral mammary epithelial cells and in invasive breast carcinoma cells, we found that the UFIT pathway-mediated AXL endocytosis allows its stabilization and depends on sphingosine kinase 2, a lipid kinase recruited in flotillin-rich plasma membrane domains and endosomes. Thus, the deregulation of vesicular trafficking following flotillin upregulation, and through sphingosine kinase 2, emerges as a new mechanism of AXL overexpression and EMT-inducing signaling pathway activation.
535.

Optogenetic tools for microbial synthetic biology.

blue green near-infrared red BLUF domains Cryptochromes LOV domains Phytochromes Review
Biotechnol Adv, 6 Apr 2022 DOI: 10.1016/j.biotechadv.2022.107953 Link to full text
Abstract: Chemical induction is one of the most common modalities used to manipulate gene expression in living systems. However, chemical induction can be toxic or expensive that compromise the economic feasibility when it comes to industrial-scale synthetic biology applications. These complications have driven the pursuit of better induction systems. Optogenetics technique can be a solution as it not only enables dynamic control with unprecedented spatiotemporal precision but also is inexpensive and eco-friendlier. The optogenetic technique harnesses natural light-sensing modules that are genetically encodable and re-programmable in various hosts. By further engineering these modules to connect with the microbial regulatory machinery, gene expression and protein activity can be finely tuned simply through light irradiation. Recent works on applying optogenetics to microbial synthetic biology have yielded remarkable achievements. To further expand the usability of optogenetics, more optogenetic tools with greater portability that are compatible with different microbial hosts need to be developed. This review focuses on non-opsin optogenetic systems and the current state of optogenetic advancements in microbes, by showcasing the different designs and functions of optogenetic tools, followed by an insight into the optogenetic approaches used to circumvent challenges in synthetic biology.
536.

Innervation modulates the functional connectivity between pancreatic endocrine cells.

blue miniSOG zebrafish in vivo Neuronal activity control
Elife, 4 Apr 2022 DOI: 10.7554/elife.64526 Link to full text
Abstract: The importance of pancreatic endocrine cell activity modulation by autonomic innervation has been debated. To investigate this question, we established an in vivo imaging model that also allows chronic and acute neuromodulation with genetic and optogenetic tools. Using the GCaMP6s biosensor together with endocrine cell fluorescent reporters, we imaged calcium dynamics simultaneously in multiple pancreatic islet cell types in live animals in control states and upon changes in innervation. We find that by 4 days post fertilization in zebrafish, a stage when islet architecture is reminiscent of that in adult rodents, prominent activity coupling between beta cells is present in basal glucose conditions. Furthermore, we show that both chronic and acute loss of nerve activity result in diminished beta-beta and alpha-beta activity coupling. Pancreatic nerves are in contact with all islet cell types, but predominantly with beta and delta cells. Surprisingly, a subset of delta cells with detectable peri-islet neural activity coupling had significantly higher homotypic coupling with other delta cells suggesting that some delta cells receive innervation that coordinates their output. Overall, these data show that innervation plays a vital role in the maintenance of homotypic and heterotypic cellular connectivity in pancreatic islets, a process critical for islet function.
537.

Light-Sensitive Lactococcus lactis for Microbe-Gut-Brain Axis Regulating via Upconversion Optogenetic Micro-Nano System.

blue YtvA L. lactis Transgene expression
ACS Nano, 1 Apr 2022 DOI: 10.1021/acsnano.1c11536 Link to full text
Abstract: The discovery of the gut-brain axis has proven that brain functions can be affected by the gut microbiota's metabolites, so there are significant opportunities to explore new tools to regulate gut microbiota and thus work on the brain functions. Meanwhile, engineered bacteria as oral live biotherapeutic agents to regulate the host's healthy homeostasis have attracted much attention in microbial therapy. However, whether this strategy is able to remotely regulate the host's brain function in vivo has not been investigated. Here, we engineered three blue-light-responsive probiotics as oral live biotherapeutic agents. They are spatiotemporally delivered and controlled by the upconversion optogenetic micro-nano system. This micro-nano system promotes the small intestine targeting and production of the exogenous L. lactis in the intestines, which realizes precise manipulation of brain functions including anxiety behavior, Parkinson's disease, and vagal afferent. The noninvasive and real-time probiotic intervention strategy makes the communiation from the gut to the host more controllable, which will enable the potential for engineered microbes accurately and effectively regulating a host's health.
538.

An optogenetic tool to recruit individual PKC isozymes to the cell surface and promote specific phosphorylation of membrane proteins.

blue CRY2/CIB1 HEK293T Immediate control of second messengers
J Biol Chem, 31 Mar 2022 DOI: 10.1016/j.jbc.2022.101893 Link to full text
Abstract: The Protein kinase C family consists of several closely related kinases. These enzymes regulate the function of proteins through the phosphorylation of hydroxyl groups on serines and/or threonines. The selective activation of individual PKC isozymes has proven challenging due to a lack of specific activator molecules. Here we developed an optogenetic, blue-light activated PKC isozyme that harnesses a plant-based dimerization system between the photosensitive cryptochrome-2 (CRY2) and the N-terminus of the transcription factor CIB1 (CIBN). We show that tagging CRY2 with the catalytic domain of PKC isozymes can efficiently promote its translocation to the cell surface upon blue light exposure. We demonstrate this system using PKCε and show that this leads to robust activation of a K+ channel (GIRK1/4) previously shown to be activated by PKCε. We anticipate that this approach can be utilized for other PKC isoforms to provide a reliable and direct stimulus for targeted membrane protein phosphorylation by the relevant PKCs.
539.

Optogenetic Control of PIP2 Interactions Shaping ENaC Activity.

blue CRY2/CIB1 CHO-K1 HEK293 Immediate control of second messengers
Int J Mol Sci, 31 Mar 2022 DOI: 10.3390/ijms23073884 Link to full text
Abstract: The activity of the epithelial Na+ Channel (ENaC) is strongly dependent on the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2). PIP2 binds two distinct cationic clusters within the N termini of β- and γ-ENaC subunits (βN1 and γN2). The affinities of these sites were previously determined using short synthetic peptides, yet their role in sensitizing ENaC to changes in PIP2 levels in the cellular system is not well established. We addressed this question by comparing the effects of PIP2 depletion and recovery on ENaC channel activity and intracellular Na+ levels [Na+]i. We tested effects on ENaC activity with mutations to the PIP2 binding sites using the optogenetic system CIBN/CRY2-OCRL to selectively deplete PIP2. We monitored changes of [Na+]i by measuring the fluorescent Na+ indicator, CoroNa Green AM, and changes in channel activity by performing patch clamp electrophysiology. Whole cell patch clamp measurements showed a complete lack of response to PIP2 depletion and recovery in ENaC with mutations to βN1 or γN2 or both sites, compared to wild type ENaC. Whereas mutant βN1 also had no change in CoroNa Green fluorescence in response to PIP2 depletion, γN2 did have reduced [Na+]i, which was explained by having shorter CoroNa Green uptake and half-life. These results suggest that CoroNa Green measurements should be interpreted with caution. Importantly, the electrophysiology results show that the βN1 and γN2 sites on ENaC are each necessary to permit maximal ENaC activity in the presence of PIP2.
540.

A guide to designing photocontrol in proteins: methods, strategies and applications.

blue green red Cobalamin-binding domains Cryptochromes LOV domains Phytochromes Review
Biol Chem, 31 Mar 2022 DOI: 10.1515/hsz-2021-0417 Link to full text
Abstract: Light is essential for various biochemical processes in all domains of life. In its presence certain proteins inside a cell are excited, which either stimulates or inhibits subsequent cellular processes. The artificial photocontrol of specifically proteins is of growing interest for the investigation of scientific questions on the organismal, cellular and molecular level as well as for the development of medicinal drugs or biocatalytic tools. For the targeted design of photocontrol in proteins, three major methods have been developed over the last decades, which employ either chemical engineering of small-molecule photosensitive effectors (photopharmacology), incorporation of photoactive non-canonical amino acids by genetic code expansion (photoxenoprotein engineering), or fusion with photoreactive biological modules (hybrid protein optogenetics). This review compares the different methods as well as their strategies and current applications for the light-regulation of proteins and provides background information useful for the implementation of each technique.
541.

mTORC2 coordinates the leading and trailing edge cytoskeletal programs during neutrophil migration.

blue iLID HL-60 Signaling cascade control
bioRxiv, 27 Mar 2022 DOI: 10.1101/2022.03.25.484773 Link to full text
Abstract: By acting both upstream and downstream of biochemical organizers of the cytoskeleton, physical forces function as central integrators of cell shape and movement. Here we use a combination of genetic, pharmacological, and optogenetic perturbations to probe the role of the conserved mechanoresponsive mTORC2 program in neutrophil polarity and motility. We find that the tension-based inhibition of leading edge signals (Rac, F-actin) that underlies protrusion competition is gated by the kinase-independent role of the complex, whereas the mTORC2 kinase arm is essential for regulation of Rho activity and Myosin II-based contraction at the trailing edge. Cells required mTORC2 for spatial and temporal coordination between the front and back polarity programs and persistent migration under confinement. mTORC2 is in a mechanosensory cascade, but membrane stretch did not suffice to stimulate mTORC2 unless the co-input PIP3 was also present. Our work suggests that different signalling arms of mTORC2 regulate spatially and molecularly divergent cytoskeletal programs allowing efficient coordination of neutrophil shape and movement.
542.

Optical control of protein delivery and partitioning in the nucleolus.

blue AsLOV2 CRY2/CRY2 HeLa Organelle manipulation
Nucleic Acids Res, 23 Mar 2022 DOI: 10.1093/nar/gkac191 Link to full text
Abstract: The nucleolus is a subnuclear membraneless compartment intimately involved in ribosomal RNA synthesis, ribosome biogenesis and stress response. Multiple optogenetic devices have been developed to manipulate nuclear protein import and export, but molecular tools tailored for remote control over selective targeting or partitioning of cargo proteins into subnuclear compartments capable of phase separation are still limited. Here, we report a set of single-component photoinducible nucleolus-targeting tools, designated pNUTs, to enable rapid and reversible nucleoplasm-to-nucleolus shuttling, with the half-lives ranging from milliseconds to minutes. pNUTs allow both global protein infiltration into nucleoli and local delivery of cargoes into the outermost layer of the nucleolus, the granular component. When coupled with the amyotrophic lateral sclerosis (ALS)-associated C9ORF72 proline/arginine-rich dipeptide repeats, pNUTs allow us to photomanipulate poly-proline-arginine nucleolar localization, perturb nucleolar protein nucleophosmin 1 and suppress nascent protein synthesis. pNUTs thus expand the optogenetic toolbox by permitting light-controllable interrogation of nucleolar functions and precise induction of ALS-associated toxicity in cellular models.
543.

Local temporal Rac1-GTP nadirs and peaks restrict cell protrusions and retractions.

blue AsLOV2 HT-1080 Control of cytoskeleton / cell motility / cell shape
Sci Adv, 23 Mar 2022 DOI: 10.1126/sciadv.abl3667 Link to full text
Abstract: Cells probe their microenvironment using membrane protrusion-retraction cycles. Spatiotemporal coordination of Rac1 and RhoA GTP-binding activities initiates and reinforces protrusions and retractions, but the control of their finite lifetime remains unclear. We examined the relations of Rac1 and RhoA GTP-binding levels to key protrusion and retraction events, as well as to cell-ECM traction forces at physiologically relevant ECM stiffness. High RhoA-GTP preceded retractions and Rac1-GTP elevation before protrusions. Notable temporal Rac1-GTP nadirs and peaks occurred at the maximal edge velocity of local membrane protrusions and retractions, respectively, followed by declined edge velocity. Moreover, altered local Rac1-GTP consistently preceded similarly altered traction force. Local optogenetic Rac1-GTP perturbations defined a function of Rac1 in restricting protrusions and retractions and in promoting local traction force. Together, we show that Rac1 plays a fundamental role in restricting the size and durability of protrusions and retractions, plausibly in part through controlling traction forces.
544.

Optogenetic control of the Bicoid morphogen reveals fast and slow modes of gap gene regulation.

blue AsLOV2 D. melanogaster in vivo Signaling cascade control
Cell Rep, 22 Mar 2022 DOI: 10.1016/j.celrep.2022.110543 Link to full text
Abstract: Developmental patterning networks are regulated by multiple inputs and feedback connections that rapidly reshape gene expression, limiting the information that can be gained solely from slow genetic perturbations. Here we show that fast optogenetic stimuli, real-time transcriptional reporters, and a simplified genetic background can be combined to reveal the kinetics of gene expression downstream of a developmental transcription factor in vivo. We engineer light-controlled versions of the Bicoid transcription factor and study their effects on downstream gap genes in embryos. Our results recapitulate known relationships, including rapid Bicoid-dependent transcription of giant and hunchback and delayed repression of Krüppel. In addition, we find that the posterior pattern of knirps exhibits a quick but inverted response to Bicoid perturbation, suggesting a noncanonical role for Bicoid in directly suppressing knirps transcription. Acute modulation of transcription factor concentration while recording output gene activity represents a powerful approach for studying developmental gene networks in vivo.
545.

Persistent cell migration emerges from a coupling between protrusion dynamics and polarized trafficking.

blue iLID hTERT RPE-1 Control of cytoskeleton / cell motility / cell shape
Elife, 18 Mar 2022 DOI: 10.7554/elife.69229 Link to full text
Abstract: Migrating cells present a variety of paths, from random to highly directional ones. While random movement can be explained by basal intrinsic activity, persistent movement requires stable polarization. Here, we quantitatively address emergence of persistent migration in (hTERT)-immortalizedRPE1 (retinal pigment epithelial) cells over long timescales. By live cell imaging and dynamic micropatterning, we demonstrate that the Nucleus-Golgi axis aligns with direction of migration leading to efficient cell movement. We show that polarized trafficking is directed toward protrusions with a 20-min delay, and that migration becomes random after disrupting internal cell organization. Eventually, we prove that localized optogenetic Cdc42 activation orients the Nucleus-Golgi axis. Our work suggests that polarized trafficking stabilizes the protrusive activity of the cell, while protrusive activity orients this polarity axis, leading to persistent cell migration. Using a minimal physical model, we show that this feedback is sufficient to recapitulate the quantitative properties of cell migration in the timescale of hours.
546.

The cell polarity determinant Dlg1 facilitates epithelial invagination by promoting tissue-scale mechanical coordination.

blue CRY2/CIB1 D. melanogaster in vivo Control of cytoskeleton / cell motility / cell shape
Development, 18 Mar 2022 DOI: 10.1242/dev.200468 Link to full text
Abstract: Epithelial folding mediated by apical constriction serves as a fundamental mechanism to convert flat epithelial sheets into multilayered structures. It remains unknown whether additional mechanical inputs are required for apical constriction-mediated folding. Using Drosophila mesoderm invagination as a model, we identified an important role for the non-constricting, lateral mesodermal cells adjacent to the constriction domain ('flanking cells') in facilitating epithelial folding. We found that depletion of the basolateral determinant Dlg1 disrupts the transition between apical constriction and invagination without affecting the rate of apical constriction. Strikingly, the observed delay in invagination is associated with ineffective apical myosin contractions in the flanking cells that lead to overstretching of their apical domain. The defects in the flanking cells impede ventral-directed movement of the lateral ectoderm, suggesting reduced mechanical coupling between tissues. Specifically disrupting the flanking cells in wild-type embryos by laser ablation or optogenetic depletion of cortical actin is sufficient to delay the apical constriction-to-invagination transition. Our findings indicate that effective mesoderm invagination requires intact flanking cells and suggest a role for tissue-scale mechanical coupling during epithelial folding.
547.

Synthetic gene networks recapitulate dynamic signal decoding and differential gene expression.

blue CRY2/CIB1 EL222 S. cerevisiae Transgene expression
Cell Syst, 14 Mar 2022 DOI: 10.1016/j.cels.2022.02.004 Link to full text
Abstract: Cells live in constantly changing environments and employ dynamic signaling pathways to transduce information about the signals they encounter. However, the mechanisms by which dynamic signals are decoded into appropriate gene expression patterns remain poorly understood. Here, we devise networked optogenetic pathways that achieve dynamic signal processing functions that recapitulate cellular information processing. Exploiting light-responsive transcriptional regulators with differing response kinetics, we build a falling edge pulse detector and show that this circuit can be employed to demultiplex dynamically encoded signals. We combine this demultiplexer with dCas9-based gene networks to construct pulsatile signal filters and decoders. Applying information theory, we show that dynamic multiplexing significantly increases the information transmission capacity from signal to gene expression state. Finally, we use dynamic multiplexing for precise multidimensional regulation of a heterologous metabolic pathway. Our results elucidate design principles of dynamic information processing and provide original synthetic systems capable of decoding complex signals for biotechnological applications.
548.

Using single-cell models to predict the functionality of synthetic circuits at the population scale.

blue EL222 S. cerevisiae Transgene expression
Proc Natl Acad Sci U S A, 10 Mar 2022 DOI: 10.1073/pnas.2114438119 Link to full text
Abstract: SignificanceAt the single-cell level, biochemical processes are inherently stochastic. For many natural systems, the resulting cell-to-cell variability is exploited by microbial populations. In synthetic biology, however, the interplay of cell-to-cell variability and population processes such as selection or growth often leads to circuits not functioning as predicted by simple models. Here we show how multiscale stochastic kinetic models that simultaneously track single-cell and population processes can be obtained based on an augmentation of the chemical master equation. These models enable us to quantitatively predict complex population dynamics of a yeast optogenetic differentiation system from a specification of the circuit's components and to demonstrate how cell-to-cell variability can be exploited to purposefully create unintuitive circuit functionality.
549.

A rich get richer effect governs intracellular condensate size distributions.

blue iLID U-2 OS Organelle manipulation
bioRxiv, 10 Mar 2022 DOI: 10.1101/2022.03.08.483545 Link to full text
Abstract: Phase separation of biomolecules into condensates has emerged as a ubiquitous mechanism for intracellular organization and impacts many intracellular processes, including reaction pathways through clustering of enzymes and their intermediates. Precise and rapid spatiotemporal control of reactions by condensates requires tuning of their sizes. However, the physical processes that govern the distribution of condensate sizes remain unclear. Here, we utilize a combination of synthetic and native condensates to probe the underlying physical mechanisms determining condensate size. We find that both native nuclear speckles and FUS condensates formed with the synthetic Corelet system obey an exponential size distribution, which can be recapitulated in Monte Carlo simulations of fast nucleation followed by coalescence. By contrast, pathological aggregation of cytoplasmic Huntingtin polyQ protein exhibits a power-law size distribution, with an exponent of −1.41 ± 0.02. These distinct behaviors reflect the relative importance of nucleation and coalescence kinetics: introducing continuous condensate nucleation into the Monte Carlo coarsening simulations gives rise to polyQ-like power-law behavior. We demonstrate that the emergence of power-law distributions under continuous nucleation reflects a “rich get richer” effect, whose extent may play a general role in the determination of condensate size distributions.
550.

NIR-Responsive Photodynamic Nanosystem Combined with Antitumor Immune Optogenetics Bacteria for Precise Synergetic Therapy.

blue YtvA L. lactis Transgene expression
ACS Appl Mater Interfaces, 9 Mar 2022 DOI: 10.1021/acsami.2c01138 Link to full text
Abstract: Photodynamic therapy (PDT) and immunotherapy are considered promising methods for the treatment of tumors. However, these treatment systems are still suffering from shortcomings such as hypoxia, easy metastasis, and delayed immune response during PDT. Therefore, it is still challenging to establish a programmed and rapid response immune combination therapy platform. Here, we construct a two-step synergetic therapy platform for the treatment of primary tumors and distant tumors using upconversion nanoparticles (UCNPs) and engineered bacteria as therapeutic media. In the first step, erbium ion (Er3+)-doped UCNPs act as a photoswitcher to activate the photosensitizer ZnPc to produce 1O2 for primary tumor therapy. In the second step, thulium ion (Tm3+)-doped UCNPs can emit blue-violet light under the excitation of near-infrared (NIR) light to activate the engineered bacteria to produce interferon (INF-γ) and release them in the intestine, which can not only treat tumors directly but also act with PDT to regulate immune pathways to activate the immune system, resulting in a joint immunotherapy effect to inhibit the growth of distant tumors. As a new type of programmatic combination therapy, we have proved that this platform can jointly activate the body's immune system during PDT and immunization treatment and can effectively inhibit tumor metastasis.
Submit a new publication to our database