Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 701 - 725 of 750 results
701.

Optogenetic control of signaling in mammalian cells.

blue cyan red UV BLUF domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Biotechnol J, 12 Sep 2014 DOI: 10.1002/biot.201400077 Link to full text
Abstract: Molecular signals are sensed by their respective receptors and information is transmitted and processed by a sophisticated intracellular network controlling various biological functions. Optogenetic tools allow the targeting of specific signaling nodes for a precise spatiotemporal control of downstream effects. These tools are based on photoreceptors such as phytochrome B (PhyB), cryptochrome 2, or light-oxygen-voltage-sensing domains that reversibly bind to specific interaction partners in a light-dependent manner. Fusions of a protein of interest to the photoreceptor or their interaction partners may enable the control of the protein function by light-mediated dimerization, a change of subcellular localization, or due to photocaging/-uncaging of effectors. In this review, we summarize the photoreceptors and the light-based mechanisms utilized for the modulation of signaling events in mammalian cells focusing on non-neuronal applications. We discuss in detail optogenetic tools and approaches applied to control signaling events mediated by second messengers, Rho GTPases and growth factor-triggered signaling cascades namely the RAS/RAF and phosphatidylinositol-3-kinase pathways. Applying the latest generation of optogenetic tools allows to control cell fate decisions such as proliferation and differentiation or to deliver therapeutic substances in a spatiotemporally controlled manner.
702.

Tools for controlling protein interactions using light.

blue UV Cryptochromes UV receptors Review
Curr Protoc Cell Biol, 2 Sep 2014 DOI: 10.1002/0471143030.cb1716s64 Link to full text
Abstract: Genetically encoded actuators that allow control of protein-protein interactions using light, termed 'optical dimerizers', are emerging as new tools for experimental biology. In recent years, numerous new and versatile dimerizer systems have been developed. Here we discuss the design of optical dimerizer experiments, including choice of a dimerizer system, photoexcitation sources, and the coordinate use of imaging reporters. We provide detailed protocols for experiments using two dimerization systems we previously developed, CRY2/CIB and UVR8/UVR8, for use in controlling transcription, protein localization, and protein secretion using light. Additionally, we provide instructions and software for constructing a pulse-controlled LED device for use in experiments requiring extended light treatments.
703.

Optogenetic engineering: light-directed cell motility.

blue CRY2/CIB1 Cos-7 MTLn3 REF52 Control of cytoskeleton / cell motility / cell shape
Angew Chem Int Ed Engl, 25 Aug 2014 DOI: 10.1002/anie.201404198 Link to full text
Abstract: Genetically encoded, light-activatable proteins provide the means to probe biochemical pathways at specific subcellular locations with exquisite temporal control. However, engineering these systems in order to provide a dramatic jump in localized activity, while retaining a low dark-state background remains a significant challenge. When placed within the framework of a genetically encodable, light-activatable heterodimerizer system, the actin-remodelling protein cofilin induces dramatic changes in the F-actin network and consequent cell motility upon illumination. We demonstrate that the use of a partially impaired mutant of cofilin is critical for maintaining low background activity in the dark. We also show that light-directed recruitment of the reduced activity cofilin mutants to the cytoskeleton is sufficient to induce F-actin remodeling, formation of filopodia, and directed cell motility.
704.

Illuminating cell signalling with optogenetic tools.

blue cyan red Cryptochromes Fluorescent proteins Phytochromes Review
Nat Rev Mol Cell Biol, 16 Jul 2014 DOI: 10.1038/nrm3837 Link to full text
Abstract: The light-based control of ion channels has been transformative for the neurosciences, but the optogenetic toolkit does not stop there. An expanding number of proteins and cellular functions have been shown to be controlled by light, and the practical considerations in deciding between reversible optogenetic systems (such as systems that use light-oxygen-voltage domains, phytochrome proteins, cryptochrome proteins and the fluorescent protein Dronpa) are well defined. The field is moving beyond proof of concept to answering real biological questions, such as how cell signalling is regulated in space and time, that were difficult or impossible to address with previous tools.
705.

Spatiotemporal control of fibroblast growth factor receptor signals by blue light.

blue CRY2/CRY2 HeLa HUVEC Signaling cascade control Control of cytoskeleton / cell motility / cell shape
Chem Biol, 26 Jun 2014 DOI: 10.1016/j.chembiol.2014.05.013 Link to full text
Abstract: Fibroblast growth factor receptors (FGFRs) regulate diverse cellular behaviors that should be exquisitely controlled in space and time. We engineered an optically controlled FGFR (optoFGFR1) by exploiting cryptochrome 2, which homointeracts upon blue light irradiation. OptoFGFR1 can rapidly and reversibly control intracellular FGFR1 signaling within seconds by illumination with blue light. At the subcellular level, localized activation of optoFGFR1 induced cytoskeletal reorganization. Utilizing the high spatiotemporal precision of optoFGFR1, we efficiently controlled cell polarity and induced directed cell migration. OptoFGFR1 provides an effective means to precisely control FGFR signaling and is an important optogenetic tool that can be used to study diverse biological processes both in vitro and in vivo.
706.

How to control proteins with light in living systems.

blue red UV BLUF domains Cryptochromes LOV domains Phytochromes UV receptors Review
Nat Chem Biol, 17 Jun 2014 DOI: 10.1038/nchembio.1534 Link to full text
Abstract: The possibility offered by photocontrolling the activity of biomolecules in vivo while recording physiological parameters is opening up new opportunities for the study of physiological processes at the single-cell level in a living organism. For the last decade, such tools have been mainly used in neuroscience, and their application in freely moving animals has revolutionized this field. New photochemical approaches enable the control of various cellular processes by manipulating a wide range of protein functions in a noninvasive way and with unprecedented spatiotemporal resolution. We are at a pivotal moment where biologists can adapt these cutting-edge technologies to their system of study. This user-oriented review presents the state of the art and highlights technical issues to be resolved in the near future for wide and easy use of these powerful approaches.
707.

Subcellular optogenetic inhibition of G proteins generates signaling gradients and cell migration.

blue CRY2/CIB1 HeLa RAW264.7 Control of cytoskeleton / cell motility / cell shape
Mol Biol Cell, 11 Jun 2014 DOI: 10.1091/mbc.e14-04-0870 Link to full text
Abstract: Cells sense gradients of extracellular cues and generate polarized responses such as cell migration and neurite initiation. There is static information on the intracellular signaling molecules involved in these responses, but how they dynamically orchestrate polarized cell behaviors is not well understood. A limitation has been the lack of methods to exert spatial and temporal control over specific signaling molecules inside a living cell. Here we introduce optogenetic tools that act downstream of native G protein-coupled receptor (GPCRs) and provide direct control over the activity of endogenous heterotrimeric G protein subunits. Light-triggered recruitment of a truncated regulator of G protein signaling (RGS) protein or a Gβγ-sequestering domain to a selected region on the plasma membrane results in localized inhibition of G protein signaling. In immune cells exposed to spatially uniform chemoattractants, these optogenetic tools allow us to create reversible gradients of signaling activity. Migratory responses generated by this approach show that a gradient of active G protein αi and βγ subunits is sufficient to generate directed cell migration. They also provide the most direct evidence so for a global inhibition pathway triggered by Gi signaling in directional sensing and adaptation. These optogenetic tools can be applied to interrogate the mechanistic basis of other GPCR-modulated cellular functions.
708.

Light-inducible receptor tyrosine kinases that regulate neurotrophin signalling.

blue CRY2/CIB1 CRY2/CRY2 HeLa PC-12 rat hippocampal neurons Signaling cascade control Control of cytoskeleton / cell motility / cell shape Cell differentiation
Nat Commun, 4 Jun 2014 DOI: 10.1038/ncomms5057 Link to full text
Abstract: Receptor tyrosine kinases (RTKs) are a family of cell-surface receptors that have a key role in regulating critical cellular processes. Here, to understand and precisely control RTK signalling, we report the development of a genetically encoded, photoactivatable Trk (tropomyosin-related kinase) family of RTKs using a light-responsive module based on Arabidopsis thaliana cryptochrome 2. Blue-light stimulation (488 nm) of mammalian cells harbouring these receptors robustly upregulates canonical Trk signalling. A single light stimulus triggers transient signalling activation, which is reversibly tuned by repetitive delivery of blue-light pulses. In addition, the light-provoked process is induced in a spatially restricted and cell-specific manner. A prolonged patterned illumination causes sustained activation of extracellular signal-regulated kinase and promotes neurite outgrowth in a neuronal cell line, and induces filopodia formation in rat hippocampal neurons. These light-controllable receptors are expected to create experimental opportunities to spatiotemporally manipulate many biological processes both in vitro and in vivo.
709.

Optical control of protein function through unnatural amino acid mutagenesis and other optogenetic approaches.

blue red Cryptochromes LOV domains Phytochromes Review
ACS Chem Biol, 21 May 2014 DOI: 10.1021/cb500176x Link to full text
Abstract: Biological processes are naturally regulated with high spatial and temporal resolution at the molecular, cellular, and systems level. To control and study processes with the same resolution, light-sensitive groups and domains have been employed to optically activate and deactivate protein function. Optical control is a noninvasive technique in which the amplitude, wavelength, spatial location, and timing of the light illumination can be easily controlled. This review focuses on applications of genetically encoded unnatural amino acids containing light-removable protecting groups to optically trigger protein function, while also discussing select optogenetic approaches using natural light-sensitive domains to engineer optical control of biological processes.
710.

Live imaging in Drosophila: The optical and genetic toolkits.

blue Cryptochromes Review
Methods, 9 May 2014 DOI: 10.1016/j.ymeth.2014.04.021 Link to full text
Abstract: Biological imaging based on light microscopy comes at the core of the methods that let us understanding morphology and its dynamics in synergy to the spatiotemporal distribution of cellular and molecular activities as the organism develops and becomes functional. Non-linear optical tools and superesolution methodologies are under constant development and their applications to live imaging of whole organisms keep improving as we speak. Genetically coded biosensors, multicolor clonal methods and optogenetics in different organisms and, in particular, in Drosophila follow equivalent paths. We anticipate a brilliant future for live imaging providing the roots for the holistic understanding, rather than for individual parts, of development and function at the whole-organism level.
711.

Reversible protein inactivation by optogenetic trapping in cells.

blue CRY2/CIB1 HEK293 HeLa NIH/3T3 Control of cytoskeleton / cell motility / cell shape Cell cycle control
Nat Methods, 4 May 2014 DOI: 10.1038/nmeth.2940 Link to full text
Abstract: We present a versatile platform to inactivate proteins in living cells using light, light-activated reversible inhibition by assembled trap (LARIAT), which sequesters target proteins into complexes formed by multimeric proteins and a blue light-mediated heterodimerization module. Using LARIAT, we inhibited diverse proteins that modulate cytoskeleton, lipid signaling and cell cycle with high spatiotemporal resolution. Use of single-domain antibodies extends the method to target proteins containing specific epitopes, including GFP.
712.

Quantitative real-time kinetics of optogenetic proteins CRY2 and CIB1/N using single-molecule tools.

blue Cryptochromes Background
Anal Biochem, 26 Apr 2014 DOI: 10.1016/j.ab.2014.04.023 Link to full text
Abstract: In this work we evaluate the interaction of two optogenetic protein variants (CIB1, CIBN) with their complementary protein CRY2 by single-molecule tools in cell-free extracts. After validating the blue light induced co-localization of CRY2 and CIB1/N by Förster resonance energy transfer (FRET) in live cells, a fluorescence correlation spectroscopy (FCS) based method was developed to quantitatively determine the in vitro association of the extracted proteins. Our experiments suggest that CIB1, in comparison with CIBN, possesses a better coupling efficiency with CRY2 due to its intact protein structure and lower diffusion rate within 300s detection window.
713.

Bidirectional regulation of mRNA translation in mammalian cells by using PUF domains.

blue CRY2/CIB1 HEK293T
Angew Chem Int Ed Engl, 26 Mar 2014 DOI: 10.1002/anie.201402095 Link to full text
Abstract: The regulation of gene expression is crucial in diverse areas of biological science, engineering, and medicine. A genetically encoded system based on the RNA binding domain of the Pumilio and FBF (PUF) proteins was developed for the bidirectional regulation (i.e., either upregulation or downregulation) of the translation of a target mRNA. PUF domains serve as designable scaffolds for the recognition of specific RNA elements and the specificity can be easily altered to target any 8-nucleotide RNA sequence. The expression of a reporter could be varied by over 17-fold when using PUF-based activators and repressors. The specificity of the method was established by using wild-type and mutant PUF domains. Furthermore, this method could be used to activate the translation of target mRNA downstream of PUF binding sites in a light-dependent manner. Such specific bidirectional control of mRNA translation could be particularly useful in the fields of synthetic biology, developmental biology, and metabolic engineering.
714.

Light-mediated kinetic control reveals the temporal effect of the Raf/MEK/ERK pathway in PC12 cell neurite outgrowth.

blue CRY2/CIB1 NIH/3T3 PC-12 Signaling cascade control Cell differentiation
PLoS ONE, 25 Mar 2014 DOI: 10.1371/journal.pone.0092917 Link to full text
Abstract: It has been proposed that differential activation kinetics allows cells to use a common set of signaling pathways to specify distinct cellular outcomes. For example, nerve growth factor (NGF) and epidermal growth factor (EGF) induce different activation kinetics of the Raf/MEK/ERK signaling pathway and result in differentiation and proliferation, respectively. However, a direct and quantitative linkage between the temporal profile of Raf/MEK/ERK activation and the cellular outputs has not been established due to a lack of means to precisely perturb its signaling kinetics. Here, we construct a light-gated protein-protein interaction system to regulate the activation pattern of the Raf/MEK/ERK signaling pathway. Light-induced activation of the Raf/MEK/ERK cascade leads to significant neurite outgrowth in rat PC12 pheochromocytoma cell lines in the absence of growth factors. Compared with NGF stimulation, light stimulation induces longer but fewer neurites. Intermittent on/off illumination reveals that cells achieve maximum neurite outgrowth if the off-time duration per cycle is shorter than 45 min. Overall, light-mediated kinetic control enables precise dissection of the temporal dimension within the intracellular signal transduction network.
715.

Real-time optogenetic control of intracellular protein concentration in microbial cell cultures.

blue CRY2/CIB1 S. cerevisiae
Integr Biol (Camb), 30 Jan 2014 DOI: 10.1039/c3ib40102b Link to full text
Abstract: Perturbations in the concentration of a specific protein are often used to study and control biological networks. The ability to "dial-in" and programmatically control the concentration of a desired protein in cultures of cells would be transformative for applications in research and biotechnology. We developed a culturing apparatus and feedback control scheme which, in combination with an optogenetic system, allows us to generate defined perturbations in the intracellular concentration of a specific protein in microbial cell culture. As light can be easily added and removed, we can control protein concentration in culture more dynamically than would be possible with long-lived chemical inducers. Control of protein concentration is achieved by sampling individual cells from the culture apparatus, imaging and quantifying protein concentration, and adjusting the inducing light appropriately. The culturing apparatus can be operated as a chemostat, allowing us to precisely control microbial growth and providing cell material for downstream assays. We illustrate the potential for this technology by generating fixed and time-varying concentrations of a specific protein in continuous steady-state cultures of the model organism Saccharomyces cerevisiae. We anticipate that this technology will allow for quantitative studies of biological networks as well as external tuning of synthetic gene circuits and bioprocesses.
716.

Optogenetic brain interfaces.

blue BLUF domains Cryptochromes Review
IEEE Rev Biomed Eng, 12 Dec 2013 DOI: 10.1109/rbme.2013.2294796 Link to full text
Abstract: The brain is a large network of interconnected neurons where each cell functions as a nonlinear processing element. Unraveling the mysteries of information processing in the complex networks of the brain requires versatile neurostimulation and imaging techniques. Optogenetics is a new stimulation method which allows the activity of neurons to be modulated by light. For this purpose, the cell-types of interest are genetically targeted to produce light-sensitive proteins. Once these proteins are expressed, neural activity can be controlled by exposing the cells to light of appropriate wavelengths. Optogenetics provides a unique combination of features, including multimodal control over neural function and genetic targeting of specific cell-types. Together, these versatile features combine to a powerful experimental approach, suitable for the study of the circuitry of psychiatric and neurological disorders. The advent of optogenetics was followed by extensive research aimed to produce new lines of light-sensitive proteins and to develop new technologies: for example, to control the distribution of light inside the brain tissue or to combine optogenetics with other modalities including electrophysiology, electrocorticography, nonlinear microscopy, and functional magnetic resonance imaging. In this paper, the authors review some of the recent advances in the field of optogenetics and related technologies and provide their vision for the future of the field.
717.

Stochastic ERK activation induced by noise and cell-to-cell propagation regulates cell density-dependent proliferation.

blue CRY2/CIB1 NRK-52E Signaling cascade control Cell cycle control
Mol Cell, 17 Oct 2013 DOI: 10.1016/j.molcel.2013.09.015 Link to full text
Abstract: The extracellular signal-regulated kinase (ERK) plays a central role in the signaling cascades of cell growth. Here, we show that stochastic ERK activity pulses regulate cell proliferation rates in a cell density-dependent manner. A fluorescence resonance energy transfer (FRET) biosensor revealed that stochastic ERK activity pulses fired spontaneously or propagated from adjacent cells. Frequency, but not amplitude, of ERK activity pulses exhibited a bell-shaped response to the cell density and correlated with cell proliferation rates. Consistently, synthetic ERK activity pulses generated by a light-switchable CRaf protein accelerated cell proliferation. A mathematical model clarified that 80% and 20% of ERK activity pulses are generated by the noise and cell-to-cell propagation, respectively. Finally, RNA sequencing analysis of cells subjected to the synthetic ERK activity pulses suggested the involvement of serum responsive factor (SRF) transcription factors in the gene expression driven by the ERK activity pulses.
718.

Multiple bHLH proteins form heterodimers to mediate CRY2-dependent regulation of flowering-time in Arabidopsis.

blue Cryptochromes Background
PLoS Genet, 10 Oct 2013 DOI: 10.1371/journal.pgen.1003861 Link to full text
Abstract: Arabidopsis thaliana cryptochrome 2 (CRY2) mediates light control of flowering time. CIB1 (CRY2-interacting bHLH 1) specifically interacts with CRY2 in response to blue light to activate the transcription of FT (Flowering Locus T). In vitro, CIB1 binds to the canonical E-box (CACGTG, also referred to as G-box) with much higher affinity than its interaction with non-canonical E-box (CANNTG) DNA sequences. However, in vivo, CIB1 binds to the chromatin region of the FT promoter, which only contains the non-canonical E-box sequences. Here, we show that CRY2 also interacts with at least CIB5, in response to blue light, but not in darkness or in response to other wavelengths of light. Our genetic analysis demonstrates that CIB1, CIB2, CIB4, and CIB5 act redundantly to activate the transcription of FT and that they are positive regulators of CRY2 mediated flowering. More importantly, CIB1 and other CIBs proteins form heterodimers, and some of the heterodimers have a higher binding affinity than the CIB homodimers to the non-canonical E-box in the in vitro DNA-binding assays. This result explains why in vitro CIB1 and other CIBs bind to the canonical E-box (G-box) with a higher affinity, whereas they are all associated with the non-canonical E-boxes at the FT promoter in vivo. Consistent with the hypothesis that different CIB proteins play similar roles in the CRY2-midiated blue light signaling, the expression of CIB proteins is regulated specifically by blue light. Our study demonstrates that CIBs function redundantly in regulating CRY2-dependent flowering, and that different CIBs form heterodimers to interact with the non-canonical E-box DNA in vivo.
719.

Arabidopsis CRY2 and ZTL mediate blue-light regulation of the transcription factor CIB1 by distinct mechanisms.

blue Cryptochromes Background
Proc Natl Acad Sci USA, 7 Oct 2013 DOI: 10.1073/pnas.1308987110 Link to full text
Abstract: Plants possess multiple photoreceptors to mediate light regulation of growth and development, but it is not well understood how different photoreceptors coordinate their actions to jointly regulate developmental responses, such as flowering time. In Arabidopsis, the photoexcited cryptochrome 2 interacts with the transcription factor CRYPTOCHROME-INTERACTING basic helix-loop-helix 1 (CIB1) to activate transcription and floral initiation. We show that the CIB1 protein expression is regulated by blue light; CIB1 is highly expressed in plants exposed to blue light, but levels of the CIB1 protein decreases in the absence of blue light. We demonstrate that CIB1 is degraded by the 26S proteasome and that blue light suppresses CIB1 degradation. Surprisingly, although cryptochrome 2 physically interacts with CIB1 in response to blue light, it is not the photoreceptor mediating blue-light suppression of CIB1 degradation. Instead, two of the three light-oxygen-voltage (LOV)-domain photoreceptors, ZEITLUPE and LOV KELCH PROTEIN 2, but not FLAVIN-BINDING KELCH REPEAT 1, are required for the function and blue-light suppression of degradation of CIB1. These results support the hypothesis that the evolutionarily unrelated blue-light receptors, cryptochrome and LOV-domain F-box proteins, mediate blue-light regulation of the same transcription factor by distinct mechanisms.
720.

Optogenetic control of protein kinase activity in mammalian cells.

blue CRY2/CRY2 HEK293T Signaling cascade control
ACS Synth Biol, 4 Oct 2013 DOI: 10.1021/sb400090s Link to full text
Abstract: Light-dependent dimerization is the basis for recently developed noninvasive optogenetic tools. Here we present a novel tool combining optogenetics with the control of protein kinase activity to investigate signal transduction pathways. Mediated by Arabidopsis thaliana photoreceptor cryptochrome 2, we activated the protein kinase C-RAF by blue light-dependent dimerization, allowing for decoupling from upstream signaling events induced by surface receptors. The activation by light is fast, reversible, and not only time but also dose dependent as monitored by phosphorylation of ERK1/2. Additionally, light-activated C-RAF controls serum response factor-mediated gene expression. Light-induced heterodimerization of C-RAF with a kinase-dead mutant of B-RAF demonstrates the enhancing role of B-RAF as a scaffold for C-RAF activity, which leads to the paradoxical activation of C-RAF found in human cancers. This optogenetic tool enables reversible control of protein kinase activity in signal duration and strength. These properties can help to shed light onto downstream signaling processes of protein kinases in living cells.
721.

Light-inducible activation of target mRNA translation in mammalian cells.

blue CRY2/CIB1 HEK293T
Chem Commun (Camb), 28 Sep 2013 DOI: 10.1039/c3cc44866e Link to full text
Abstract: A genetically encoded optogenetic system was constructed that activates mRNA translation in mammalian cells in response to light. Blue light induces the reconstitution of an RNA binding domain and a translation initiation domain, thereby activating target mRNA translation downstream of the binding sites.
722.

Optobiology: optical control of biological processes via protein engineering.

blue cyan red UV Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Biochem Soc Trans, 23 Sep 2013 DOI: 10.1042/bst20130150 Link to full text
Abstract: Enabling optical control over biological processes is a defining goal of the new field of optogenetics. Control of membrane voltage by natural rhodopsin family ion channels has found widespread acceptance in neuroscience, due to the fact that these natural proteins control membrane voltage without further engineering. In contrast, optical control of intracellular biological processes has been a fragmented effort, with various laboratories engineering light-responsive properties into proteins in different manners. In the present article, we review the various systems that have been developed for controlling protein functions with light based on vertebrate rhodopsins, plant photoregulatory proteins and, most recently, the photoswitchable fluorescent protein Dronpa. By allowing biology to be controlled with spatiotemporal specificity and tunable dynamics, light-controllable proteins will find applications in the understanding of cellular and organismal biology and in synthetic biology.
723.

Optical control of mammalian endogenous transcription and epigenetic states.

blue CRY2/CIB1 HEK293FT mouse in vivo Neuro-2a primary mouse cortical neurons Epigenetic modification Endogenous gene expression
Nature, 23 Aug 2013 DOI: 10.1038/nature12466 Link to full text
Abstract: The dynamic nature of gene expression enables cellular programming, homeostasis and environmental adaptation in living systems. Dissection of causal gene functions in cellular and organismal processes therefore necessitates approaches that enable spatially and temporally precise modulation of gene expression. Recently, a variety of microbial and plant-derived light-sensitive proteins have been engineered as optogenetic actuators, enabling high-precision spatiotemporal control of many cellular functions. However, versatile and robust technologies that enable optical modulation of transcription in the mammalian endogenous genome remain elusive. Here we describe the development of light-inducible transcriptional effectors (LITEs), an optogenetic two-hybrid system integrating the customizable TALE DNA-binding domain with the light-sensitive cryptochrome 2 protein and its interacting partner CIB1 from Arabidopsis thaliana. LITEs do not require additional exogenous chemical cofactors, are easily customized to target many endogenous genomic loci, and can be activated within minutes with reversibility. LITEs can be packaged into viral vectors and genetically targeted to probe specific cell populations. We have applied this system in primary mouse neurons, as well as in the brain of freely behaving mice in vivo to mediate reversible modulation of mammalian endogenous gene expression as well as targeted epigenetic chromatin modifications. The LITE system establishes a novel mode of optogenetic control of endogenous cellular processes and enables direct testing of the causal roles of genetic and epigenetic regulation in normal biological processes and disease states.
724.

Techniques: Optogenetics takes more control.

blue Cryptochromes Review
Nat Rev Neurosci, 14 Aug 2013 DOI: 10.1038/nrn3580 Link to full text
Abstract: Abstract not available.
725.

Optogenetic control of PIP3: PIP3 is sufficient to induce the actin-based active part of growth cones and is regulated via endocytosis.

blue CRY2/CIB1 HEK293 primary mouse hippocampal neurons Control of cytoskeleton / cell motility / cell shape
PLoS ONE, 7 Aug 2013 DOI: 10.1371/journal.pone.0070861 Link to full text
Abstract: Phosphatidylinositol-3,4,5-trisphosphate (PIP3) is highly regulated in a spatiotemporal manner and plays multiple roles in individual cells. However, the local dynamics and primary functions of PIP3 in developing neurons remain unclear because of a lack of techniques for manipulating PIP3 spatiotemporally. We addressed this issue by combining optogenetic control and observation of endogenous PIP3 signaling. Endogenous PIP3 was abundant in actin-rich structures such as growth cones and "waves", and PIP3-rich plasma membranes moved actively within growth cones. To study the role of PIP3 in developing neurons, we developed a PI3K photoswitch that can induce production of PIP3 at specific locations upon blue light exposure. We succeeded in producing PIP3 locally in mouse hippocampal neurons. Local PIP3 elevation at neurite tips did not induce neurite elongation, but it was sufficient to induce the formation of filopodia and lamellipodia. Interestingly, ectopic PIP3 elevation alone activated membranes to form actin-based structures whose behavior was similar to that of growth-cone-like "waves". We also found that endocytosis regulates effective PIP3 concentration at plasma membranes. These results revealed the local dynamics and primary functions of PIP3, providing fundamental information about PIP3 signaling in neurons.
Submit a new publication to our database