Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Qr: application:"Endogenous gene expression"
Showing 51 - 61 of 61 results
51.

CRISPR-Cas9-based photoactivatable transcription systems to induce neuronal differentiation.

blue CRY2/CIB1 Magnets HEK293T HeLa human fetal fibroblasts human IPSCs Cell differentiation Endogenous gene expression
Nat Methods, 11 Sep 2017 DOI: 10.1038/nmeth.4430 Link to full text
Abstract: Our improved CRISPR-Cas9-based photoactivatable transcription systems, CPTS2.0 and Split-CPTS2.0, enable high blue-light-inducible activation of endogenous target genes in various human cell lines. We achieved reversible activation of target genes with CPTS2.0 and induced neuronal differentiation in induced pluripotent stem cells (iPSCs) by upregulating NEUROD1 with Split-CPTS2.0.
52.

Decoding temporal interpretation of the morphogen Bicoid in the early Drosophila embryo.

blue CRY2/CRY2 D. melanogaster in vivo Endogenous gene expression Developmental processes
Elife, 10 Jul 2017 DOI: 10.7554/elife.26258 Link to full text
Abstract: Morphogen gradients provide essential spatial information during development. Not only the local concentration but also duration of morphogen exposure is critical for correct cell fate decisions. Yet, how and when cells temporally integrate signals from a morphogen remains unclear. Here, we use optogenetic manipulation to switch off Bicoid-dependent transcription in the early Drosophila embryo with high temporal resolution, allowing time-specific and reversible manipulation of morphogen signalling. We find that Bicoid transcriptional activity is dispensable for embryonic viability in the first hour after fertilization, but persistently required throughout the rest of the blastoderm stage. Short interruptions of Bicoid activity alter the most anterior cell fate decisions, while prolonged inactivation expands patterning defects from anterior to posterior. Such anterior susceptibility correlates with high reliance of anterior gap gene expression on Bicoid. Therefore, cell fates exposed to higher Bicoid concentration require input for longer duration, demonstrating a previously unknown aspect of Bicoid decoding.
53.

Optogenetic control of nuclear protein export.

blue AsLOV2 HEK293T HeLa Hepa1-6 Endogenous gene expression
Nat Commun, 8 Feb 2016 DOI: 10.1038/ncomms10624 Link to full text
Abstract: Active nucleocytoplasmic transport is a key mechanism underlying protein regulation in eukaryotes. While nuclear protein import can be controlled in space and time with a portfolio of optogenetic tools, protein export has not been tackled so far. Here we present a light-inducible nuclear export system (LEXY) based on a single, genetically encoded tag, which enables precise spatiotemporal control over the export of tagged proteins. A constitutively nuclear, chromatin-anchored LEXY variant expands the method towards light inhibition of endogenous protein export by sequestering cellular CRM1 receptors. We showcase the utility of LEXY for cell biology applications by regulating a synthetic repressor as well as human p53 transcriptional activity with light. LEXY is a powerful addition to the optogenetic toolbox, allowing various novel applications in synthetic and cell biology.
54.

Regulation of neural gene transcription by optogenetic inhibition of the RE1-silencing transcription factor.

blue AsLOV2 HeLa Neuro-2a primary mouse cortical neurons Cell differentiation Endogenous gene expression Neuronal activity control
Proc Natl Acad Sci USA, 23 Dec 2015 DOI: 10.1073/pnas.1507355112 Link to full text
Abstract: Optogenetics provides new ways to activate gene transcription; however, no attempts have been made as yet to modulate mammalian transcription factors. We report the light-mediated regulation of the repressor element 1 (RE1)-silencing transcription factor (REST), a master regulator of neural genes. To tune REST activity, we selected two protein domains that impair REST-DNA binding or recruitment of the cofactor mSin3a. Computational modeling guided the fusion of the inhibitory domains to the light-sensitive Avena sativa light-oxygen-voltage-sensing (LOV) 2-phototrophin 1 (AsLOV2). By expressing AsLOV2 chimeras in Neuro2a cells, we achieved light-dependent modulation of REST target genes that was associated with an improved neural differentiation. In primary neurons, light-mediated REST inhibition increased Na(+)-channel 1.2 and brain-derived neurotrophic factor transcription and boosted Na(+) currents and neuronal firing. This optogenetic approach allows the coordinated expression of a cluster of genes impinging on neuronal activity, providing a tool for studying neuronal physiology and correcting gene expression changes taking place in brain diseases.
55.

Optogenetic Inhibitor of the Transcription Factor CREB.

blue PYP HEK293T in vitro primary mouse cortical neurons Endogenous gene expression Extracellular optogenetics
Chem Biol, 19 Nov 2015 DOI: 10.1016/j.chembiol.2015.09.018 Link to full text
Abstract: Current approaches for optogenetic control of transcription do not mimic the activity of endogenous transcription factors, which act at numerous sites in the genome in a complex interplay with other factors. Optogenetic control of dominant negative versions of endogenous transcription factors provides a mechanism for mimicking the natural regulation of gene expression. Here we describe opto-DN-CREB, a blue-light-controlled inhibitor of the transcription factor CREB created by fusing the dominant negative inhibitor A-CREB to photoactive yellow protein (PYP). A light-driven conformational change in PYP prevents coiled-coil formation between A-CREB and CREB, thereby activating CREB. Optogenetic control of CREB function was characterized in vitro, in HEK293T cells, and in neurons where blue light enabled control of expression of the CREB targets NR4A2 and c-Fos. Dominant negative inhibitors exist for numerous transcription factors; linking these to optogenetic domains offers a general approach for spatiotemporal control of native transcriptional events.
56.

A light-inducible CRISPR-Cas9 system for control of endogenous gene activation.

blue CRY2/CIB1 HEK293T Endogenous gene expression
Nat Chem Biol, 9 Feb 2015 DOI: 10.1038/nchembio.1753 Link to full text
Abstract: Optogenetic systems enable precise spatial and temporal control of cell behavior. We engineered a light-activated CRISPR-Cas9 effector (LACE) system that induces transcription of endogenous genes in the presence of blue light. This was accomplished by fusing the light-inducible heterodimerizing proteins CRY2 and CIB1 to a transactivation domain and the catalytically inactive dCas9, respectively. The versatile LACE system can be easily directed to new DNA sequences for the dynamic regulation of endogenous genes.
57.

CRISPR-Cas9-based photoactivatable transcription system.

blue CRY2/CIB1 Cos-7 HEK293 HEK293T HeLa Endogenous gene expression
Chem Biol, 22 Jan 2015 DOI: 10.1016/j.chembiol.2014.12.011 Link to full text
Abstract: Targeted endogenous gene activation is necessary for understanding complex gene networks and has great potential in medical and industrial applications. The CRISPR-Cas system offers simple and powerful tools for this purpose. However, these CRISPR-Cas-based tools for activating user-defined genes are unable to offer precise temporal control of gene expression, despite the fact that many biological phenomena are regulated by highly dynamic patterns of gene expression. Here we created a light-inducible, user-defined, endogenous gene activation system based on CRISPR-Cas9. We demonstrated that this CRISPR-Cas9-based transcription system can allow rapid and reversible targeted gene activation by light. In addition, using this system, we have exemplified photoactivation of multiple user-defined endogenous genes in mammalian cells. The present CRISPR-Cas9-based transcription system offers simple and versatile approaches for precise endogenous gene activation in basic biological research and biotechnology applications.
58.

Optical control of mammalian endogenous transcription and epigenetic states.

blue CRY2/CIB1 HEK293FT mouse in vivo Neuro-2a primary mouse cortical neurons Epigenetic modification Endogenous gene expression
Nature, 23 Aug 2013 DOI: 10.1038/nature12466 Link to full text
Abstract: The dynamic nature of gene expression enables cellular programming, homeostasis and environmental adaptation in living systems. Dissection of causal gene functions in cellular and organismal processes therefore necessitates approaches that enable spatially and temporally precise modulation of gene expression. Recently, a variety of microbial and plant-derived light-sensitive proteins have been engineered as optogenetic actuators, enabling high-precision spatiotemporal control of many cellular functions. However, versatile and robust technologies that enable optical modulation of transcription in the mammalian endogenous genome remain elusive. Here we describe the development of light-inducible transcriptional effectors (LITEs), an optogenetic two-hybrid system integrating the customizable TALE DNA-binding domain with the light-sensitive cryptochrome 2 protein and its interacting partner CIB1 from Arabidopsis thaliana. LITEs do not require additional exogenous chemical cofactors, are easily customized to target many endogenous genomic loci, and can be activated within minutes with reversibility. LITEs can be packaged into viral vectors and genetically targeted to probe specific cell populations. We have applied this system in primary mouse neurons, as well as in the brain of freely behaving mice in vivo to mediate reversible modulation of mammalian endogenous gene expression as well as targeted epigenetic chromatin modifications. The LITE system establishes a novel mode of optogenetic control of endogenous cellular processes and enables direct testing of the causal roles of genetic and epigenetic regulation in normal biological processes and disease states.
59.

[Role of adrenergic mechanisms in origin of arrhythmias following administration of tricyclic antidepressive agents].

blue AsLOV2 D. melanogaster in vivo Endogenous gene expression Developmental processes
Dtsch Med Wochenschr, 16 Jan 1976 DOI: 10.1242/dev.204706 Link to full text
Abstract: Abstract not available.
60.

Effect of plasma [K+] on the DC potential and on ion distributions between CSF and blood.

blue NcWC1-LOV VVD S. cerevisiae Endogenous gene expression
J Appl Physiol, Dec 1975 DOI: 10.1021/acssynbio.4c00654 Link to full text
Abstract: Keeping the arterial pH at 7.4 and PaCO2 at 40 mmHg in eight anesthetized dogs, we acutely raised plasma potassium concentration from 3.4 to 8.2 meq/1, then allowed it to decay back to control levels. The cerebrospinal fluid (CSF)-blood electrical potential difference (pd) increased 13.2 mV per 10-fold increase in plasma [K+]. Again keeping arterial pH at 7.4 and PaCO2 at 40 mmHg, we elevated plasma [K+] in four dogs from 3.3 to 8.0 meq/1 and maintained this level for 6 h. We found 1) that the PD increased from a control value of +1.3 to +8.9mV, showing no tendency to decay over the 6 h; and 2) that the change in PD did not affect the distribution of Na+, K+, H+, Cl-, or HCO3- between blood and CSF over the 6 h. These results suggest that under these conditions the PD between CSF and blood may play no effective role in determining the distributions of these charged species by 6 h. These results are contrasted with recent findings which suggest that H+ and HCO3- are distributed according to passive forces between CSF and blood.
61.

[The isomerisation of amygdalin and its homologues (author's transl)].

blue EL222 S. cerevisiae Endogenous gene expression
Arch Pharm (Weinheim), Dec 1975 DOI: 10.1021/acssynbio.4c00617 Link to full text
Abstract: Abstract not available.
Submit a new publication to our database