Qr: application:"Control of cytoskeleton / cell motility / cell shape"
Showing 76 - 100 of 209 results
76.
Single-Component Optogenetic Tools for Inducible RhoA GTPase Signaling.
Abstract:
Optogenetic tools are created to control RhoA GTPase, a central regulator of actin organization and actomyosin contractility. RhoA GTPase, or its upstream activator ARHGEF11, is fused to BcLOV4, a photoreceptor that can be dynamically recruited to the plasma membrane by a light-regulated protein-lipid electrostatic interaction with the inner leaflet. Direct membrane recruitment of these proteins induces potent contractile signaling sufficient to separate adherens junctions with as little as one pulse of blue light. Induced cytoskeletal morphology changes are dependent on the alignment of the spatially patterned stimulation with the underlying cell polarization. RhoA-mediated cytoskeletal activation drives yes-associated protein (YAP) nuclear localization within minutes and consequent mechanotransduction verified by YAP-transcriptional enhanced associate domain transcriptional activity. These single-transgene tools do not require protein binding partners for dynamic membrane localization and permit spatiotemporally precise control over RhoA signaling to advance the study of its diverse regulatory roles in cell migration, morphogenesis, and cell cycle maintenance.
77.
Using optogenetics to link myosin patterns to contractile cell behaviors during convergent extension.
Abstract:
Distinct patterns of actomyosin contractility are often associated with particular epithelial tissue shape changes during development. For example, a planar-polarized pattern of myosin II localization regulated by Rho1 signaling during Drosophila body axis elongation is thought to drive cell behaviors that contribute to convergent extension. However, it is not well understood how specific aspects of a myosin pattern influence the multiple cell behaviors, including cell intercalation, cell shape changes, and apical cell area fluctuations, that simultaneously occur during morphogenesis. Here, we developed two optogenetic tools, optoGEF and optoGAP, to activate or deactivate Rho1 signaling, respectively. We used these tools to manipulate myosin patterns at the apical side of the germband epithelium during Drosophila axis elongation and analyzed the effects on contractile cell behaviors. We show that uniform activation or inactivation of Rho1 signaling across the apical surface of the germband is sufficient to disrupt the planar-polarized pattern of myosin at cell junctions on the timescale of 3-5 min, leading to distinct changes in junctional and medial myosin patterns in optoGEF and optoGAP embryos. These two perturbations to Rho1 activity both disrupt axis elongation and cell intercalation but have distinct effects on cell area fluctuations and cell packings that are linked with changes in the medial and junctional myosin pools. These studies demonstrate that acute optogenetic perturbations to Rho1 activity are sufficient to rapidly override the endogenous planar-polarized myosin pattern in the germband during axis elongation. Moreover, our results reveal that the levels of Rho1 activity and the balance between medial and junctional myosin play key roles not only in organizing the cell rearrangements that are known to directly contribute to axis elongation but also in regulating cell area fluctuations and cell packings, which have been proposed to be important factors influencing the mechanics of tissue deformation and flow.
78.
Optogenetic model reveals cell shape regulation through FAK and Fascin.
Abstract:
Cell shape regulation is important but the mechanisms that govern shape are not fully understood, in part due to limited experimental models where cell shape changes and underlying molecular processes can be rapidly and non-invasively monitored in real time. Here, we use an optogenetic tool to activate RhoA in the middle of mononucleated macrophages to induce contraction, resulting in a side with the nucleus that retains its shape and a non-nucleated side which was unable to maintain its shape and collapsed. In cells overexpressing focal adhesion kinase (FAK), the non-nucleated side exhibited a wide flat morphology and was similar in adhesion area to the nucleated side. In cells overexpressing fascin, an actin bundling protein, the non-nucleated side assumed a spherical shape and was similar in height to the nucleated side. This effect of fascin was also observed in fibroblasts even without inducing furrow formation. Based on these results, we conclude that FAK and fascin work together to maintain cell shape by regulating adhesion area and height, respectively, in different cell types.
79.
Rab10-Positive Tubular Structures Represent a Novel Endocytic Pathway That Diverges From Canonical Macropinocytosis in RAW264 Macrophages.
Abstract:
Using the optogenetic photo-manipulation of photoactivatable (PA)-Rac1, remarkable cell surface ruffling and the formation of a macropinocytic cup (premacropinosome) could be induced in the region of RAW264 macrophages irradiated with blue light due to the activation of PA-Rac1. However, the completion of macropinosome formation did not occur until Rac1 was deactivated by the removal of the light stimulus. Following PA-Rac1 deactivation, some premacropinosomes closed into intracellular macropinosomes, whereas many others transformed into long Rab10-positive tubules without forming typical macropinosomes. These Rab10-positive tubules moved centripetally towards the perinuclear Golgi region along microtubules. Surprisingly, these Rab10-positive tubules did not contain any endosome/lysosome compartment markers, such as Rab5, Rab7, or LAMP1, suggesting that the Rab10-positive tubules were not part of the degradation pathway for lysosomes. These Rab10-positive tubules were distinct from recycling endosomal compartments, which are labeled with Rab4, Rab11, or SNX1. These findings suggested that these Rab10-positive tubules may be a part of non-degradative endocytic pathway that has never been known. The formation of Rab10-positive tubules from premacropinosomes was also observed in control and phorbol myristate acetate (PMA)-stimulated macrophages, although their frequencies were low. Interestingly, the formation of Rab10-positive premacropinosomes and tubules was not inhibited by phosphoinositide 3-kinase (PI3K) inhibitors, while the classical macropinosome formation requires PI3K activity. Thus, this study provides evidence to support the existence of Rab10-positive tubules as a novel endocytic pathway that diverges from canonical macropinocytosis.
80.
Endothelial cell invasion is controlled by dactylopodia.
-
Figueiredo, AM
-
Barbacena, P
-
Russo, A
-
Vaccaro, S
-
Ramalho, D
-
Pena, A
-
Lima, AP
-
Ferreira, RR
-
Fidalgo, MA
-
El-Marjou, F
-
Carvalho, Y
-
Vasconcelos, FF
-
Lennon-Dumenil, AM
-
Vignjevic, DM
-
Franco, CA
Abstract:
Sprouting angiogenesis is fundamental for development and contributes to cancer, diabetic retinopathy, and cardiovascular diseases. Sprouting angiogenesis depends on the invasive properties of endothelial tip cells. However, there is very limited knowledge on how tip cells invade into tissues. Here, we show that endothelial tip cells use dactylopodia as the main cellular protrusion for invasion into nonvascular extracellular matrix. We show that dactylopodia and filopodia protrusions are balanced by myosin IIA (NMIIA) and actin-related protein 2/3 (Arp2/3) activity. Endothelial cell-autonomous ablation of NMIIA promotes excessive dactylopodia formation in detriment of filopodia. Conversely, endothelial cell-autonomous ablation of Arp2/3 prevents dactylopodia development and leads to excessive filopodia formation. We further show that NMIIA inhibits Rac1-dependent activation of Arp2/3 by regulating the maturation state of focal adhesions. Our discoveries establish a comprehensive model of how endothelial tip cells regulate its protrusive activity and will pave the way toward strategies to block invasive tip cells during sprouting angiogenesis.
81.
Rac1 activation can generate untemplated, lamellar membrane ruffles.
Abstract:
Membrane protrusions that occur on the dorsal surface of a cell are an excellent experimental system to study actin machinery at work in a living cell. Small GTPase Rac1 controls the membrane protrusions that form and encapsulate extracellular volumes to perform pinocytic or phagocytic functions.
82.
Multiple Sclerosis-Associated hnRNPA1 Mutations Alter hnRNPA1 Dynamics and Influence Stress Granule Formation.
Abstract:
Evidence indicates that dysfunctional heterogeneous ribonucleoprotein A1 (hnRNPA1; A1) contributes to the pathogenesis of neurodegeneration in multiple sclerosis. Understanding molecular mechanisms of neurodegeneration in multiple sclerosis may result in novel therapies that attenuate neurodegeneration, thereby improving the lives of MS patients with multiple sclerosis. Using an in vitro, blue light induced, optogenetic protein expression system containing the optogene Cryptochrome 2 and a fluorescent mCherry reporter, we examined the effects of multiple sclerosis-associated somatic A1 mutations (P275S and F281L) in A1 localization, cluster kinetics and stress granule formation in real-time. We show that A1 mutations caused cytoplasmic mislocalization, and significantly altered the kinetics of A1 cluster formation/dissociation, and the quantity and size of clusters. A1 mutations also caused stress granule formation to occur more quickly and frequently in response to blue light stimulation. This study establishes a live cell optogenetics imaging system to probe localization and association characteristics of A1. It also demonstrates that somatic mutations in A1 alter its function and promote stress granule formation, which supports the hypothesis that A1 dysfunction may exacerbate neurodegeneration in multiple sclerosis.
83.
Optogenetic manipulation of cellular communication using engineered myosin motors.
Abstract:
Cells achieve highly efficient and accurate communication through cellular projections such as neurites and filopodia, yet there is a lack of genetically encoded tools that can selectively manipulate their composition and dynamics. Here, we present a versatile optogenetic toolbox of artificial multi-headed myosin motors that can move bidirectionally within long cellular extensions and allow for the selective transport of GFP-tagged cargo with light. Utilizing these engineered motors, we could transport bulky transmembrane receptors and organelles as well as actin remodellers to control the dynamics of both filopodia and neurites. Using an optimized in vivo imaging scheme, we further demonstrate that, upon limb amputation in axolotls, a complex array of filopodial extensions is formed. We selectively modulated these filopodial extensions and showed that they re-establish a Sonic Hedgehog signalling gradient during regeneration. Considering the ubiquitous existence of actin-based extensions, this toolbox shows the potential to manipulate cellular communication with unprecedented accuracy.
84.
Control of SRC molecular dynamics encodes distinct cytoskeletal responses by specifying signaling pathway usage.
-
Kerjouan, A
-
Boyault, C
-
Oddou, C
-
Hiriart-Bryant, E
-
Grichine, A
-
Kraut, A
-
Pezet, M
-
Balland, M
-
Faurobert, E
-
Bonnet, I
-
Coute, Y
-
Fourcade, B
-
Albiges-Rizo, C
-
Destaing, O
Abstract:
Upon activation by different transmembrane receptors, the same signaling protein can induce distinct cellular responses. A way to decipher the mechanisms of such pleiotropic signaling activity is to directly manipulate the decision-making activity that supports the selection between distinct cellular responses. We developed an optogenetic probe (optoSRC) to control SRC signaling, an example of a pleiotropic signaling node, and we demonstrated its ability to generate different acto-adhesive structures (lamellipodia or invadosomes) upon distinct spatio-temporal control of SRC kinase activity. The occurrence of each acto-adhesive structure was simply dictated by the dynamics of optoSRC nanoclusters in adhesive sites, which were dependent on the SH3 and Unique domains of the protein. The different decision-making events regulated by optoSRC dynamics induced distinct downstream signaling pathways, which we characterized using time-resolved proteomic and network analyses. Collectively, by manipulating the molecular mobility of SRC kinase activity, these experiments reveal the pleiotropy-encoding mechanism of SRC signaling.
85.
Optogenetic control of PRC1 reveals its role in chromosome alignment on the spindle by overlap length-dependent forces.
Abstract:
During metaphase, chromosome position at the spindle equator is regulated by the forces exerted by kinetochore microtubules and polar ejection forces. However, the role of forces arising from mechanical coupling of sister kinetochore fibers with bridging fibers in chromosome alignment is unknown. Here we develop an optogenetic approach for acute removal of PRC1 to partially disassemble bridging fibers and show that they promote chromosome alignment. Tracking of the plus-end protein EB3 revealed longer antiparallel overlaps of bridging microtubules upon PRC1 removal, which was accompanied by misaligned and lagging kinetochores. Kif4A/kinesin-4 and Kif18A/kinesin-8 were found within the bridging fiber and largely lost upon PRC1 removal, suggesting that these proteins regulate the overlap length of bridging microtubules. We propose that PRC1-mediated crosslinking of bridging microtubules and recruitment of kinesins to the bridging fiber promotes chromosome alignment by overlap length-dependent forces transmitted to the associated kinetochore fibers.
86.
Increased lateral tension is sufficient for epithelial folding in Drosophila.
Abstract:
The folding of epithelial sheets is important for tissues, organs and embryos to attain their proper shapes. Epithelial folding requires subcellular modulations of mechanical forces in cells. Fold formation has mainly been attributed to mechanical force generation at apical cell sides, but several studies indicate a role of mechanical tension at lateral cell sides in this process. However, whether lateral tension increase is sufficient to drive epithelial folding remains unclear. Here, we have used optogenetics to locally increase mechanical force generation at apical, lateral or basal sides of epithelial Drosophila wing disc cells, an important model for studying morphogenesis. We show that optogenetic recruitment of RhoGEF2 to apical, lateral or basal cell sides leads to local accumulation of F-actin and increase in mechanical tension. Increased lateral tension, but not increased apical or basal tension, results in sizeable fold formation. Our results stress the diversification of folding mechanisms between different tissues and highlight the importance of lateral tension increase for epithelial folding.
87.
Optogenetic Tuning Reveals Rho Amplification-Dependent Dynamics of a Cell Contraction Signal Network.
-
Kamps, D
-
Koch, J
-
Juma, VO
-
Campillo-Funollet, E
-
Graessl, M
-
Banerjee, S
-
Mazel, T
-
Chen, X
-
Wu, YW
-
Portet, S
-
Madzvamuse, A
-
Nalbant, P
-
Dehmelt, L
Abstract:
Local cell contraction pulses play important roles in tissue and cell morphogenesis. Here, we improve a chemo-optogenetic approach and apply it to investigate the signal network that generates these pulses. We use these measurements to derive and parameterize a system of ordinary differential equations describing temporal signal network dynamics. Bifurcation analysis and numerical simulations predict a strong dependence of oscillatory system dynamics on the concentration of GEF-H1, an Lbc-type RhoGEF, which mediates the positive feedback amplification of Rho activity. This prediction is confirmed experimentally via optogenetic tuning of the effective GEF-H1 concentration in individual living cells. Numerical simulations show that pulse amplitude is most sensitive to external inputs into the myosin component at low GEF-H1 concentrations and that the spatial pulse width is dependent on GEF-H1 diffusion. Our study offers a theoretical framework to explain the emergence of local cell contraction pulses and their modulation by biochemical and mechanical signals.
88.
Single-Protein Tracking to Study Protein Interactions During Integrin-Based Migration.
Abstract:
Cell migration is a complex biophysical process which involves the coordination of molecular assemblies including integrin-dependent adhesions, signaling networks and force-generating cytoskeletal structures incorporating both actin polymerization and myosin activity. During the last decades, proteomic studies have generated impressive protein-protein interaction maps, although the subcellular location, duration, strength, sequence, and nature of these interactions are still concealed. In this chapter we describe how recent developments in superresolution microscopy (SRM) and single-protein tracking (SPT) start to unravel protein interactions and actions in subcellular molecular assemblies driving cell migration.
89.
A versatile oblique plane microscope for large-scale and high-resolution imaging of subcellular dynamics.
-
Sapoznik, E
-
Chang, BJ
-
Huh, J
-
Ju, RJ
-
Azarova, EV
-
Pohlkamp, T
-
Welf, ES
-
Broadbent, D
-
Carisey, AF
-
Stehbens, SJ
-
Lee, KM
-
Marín, A
-
Hanker, AB
-
Schmidt, JC
-
Arteaga, CL
-
Yang, B
-
Kobayashi, Y
-
Tata, PR
-
Kruithoff, R
-
Doubrovinski, K
-
Shepherd, DP
-
Millett-Sikking, A
-
York, AG
-
Dean, KM
-
Fiolka, RP
Abstract:
We present an oblique plane microscope (OPM) that uses a bespoke glass-tipped tertiary objective to improve the resolution, field of view, and usability over previous variants. Owing to its high numerical aperture optics, this microscope achieves lateral and axial resolutions that are comparable to the square illumination mode of lattice light-sheet microscopy, but in a user friendly and versatile format. Given this performance, we demonstrate high-resolution imaging of clathrin-mediated endocytosis, vimentin, the endoplasmic reticulum, membrane dynamics, and Natural Killer-mediated cytotoxicity. Furthermore, we image biological phenomena that would be otherwise challenging or impossible to perform in a traditional light-sheet microscope geometry, including cell migration through confined spaces within a microfluidic device, subcellular photoactivation of Rac1, diffusion of cytoplasmic rheological tracers at a volumetric rate of 14 Hz, and large field of view imaging of neurons, developing embryos, and centimeter-scale tissue sections.
90.
The proline-rich domain promotes Tau liquid-liquid phase separation in cells.
Abstract:
Tau protein in vitro can undergo liquid-liquid phase separation (LLPS); however, observations of this phase transition in living cells are limited. To investigate protein state transitions in living cells, we attached Cry2 to Tau and studied the contribution of each domain that drives the Tau cluster in living cells. Surprisingly, the proline-rich domain (PRD), not the microtubule binding domain (MTBD), drives LLPS and does so under the control of its phosphorylation state. Readily observable, PRD-derived cytoplasmic condensates underwent fusion and fluorescence recovery after photobleaching consistent with the PRD LLPS in vitro. Simulations demonstrated that the charge properties of the PRD predicted phase separation. Tau PRD formed heterotypic condensates with EB1, a regulator of plus-end microtubule dynamic instability. The specific domain properties of the MTBD and PRD serve distinct but mutually complementary roles that use LLPS in a cellular context to implement emergent functionalities that scale their relationship from binding α-beta tubulin heterodimers to the larger proportions of microtubules.
91.
Dynamic centriolar localization of Polo and Centrobin in early mitosis primes centrosome asymmetry.
Abstract:
Centrosomes, the main microtubule organizing centers (MTOCs) of metazoan cells, contain an older "mother" and a younger "daughter" centriole. Stem cells either inherit the mother or daughter-centriole-containing centrosome, providing a possible mechanism for biased delivery of cell fate determinants. However, the mechanisms regulating centrosome asymmetry and biased centrosome segregation are unclear. Using 3D-structured illumination microscopy (3D-SIM) and live-cell imaging, we show in fly neural stem cells (neuroblasts) that the mitotic kinase Polo and its centriolar protein substrate Centrobin (Cnb) accumulate on the daughter centriole during mitosis, thereby generating molecularly distinct mother and daughter centrioles before interphase. Cnb's asymmetric localization, potentially involving a direct relocalization mechanism, is regulated by Polo-mediated phosphorylation, whereas Polo's daughter centriole enrichment requires both Wdr62 and Cnb. Based on optogenetic protein mislocalization experiments, we propose that the establishment of centriole asymmetry in mitosis primes biased interphase MTOC activity, necessary for correct spindle orientation.
92.
βH-spectrin is required for ratcheting apical pulsatile constrictions during tissue invagination.
Abstract:
Actomyosin-mediated apical constriction drives a wide range of morphogenetic processes. Activation of myosin-II initiates pulsatile cycles of apical constrictions followed by either relaxation or stabilization (ratcheting) of the apical surface. While relaxation leads to dissipation of contractile forces, ratcheting is critical for the generation of tissue-level tension and changes in tissue shape. How ratcheting is controlled at the molecular level is unknown. Here, we show that the actin crosslinker βH-spectrin is upregulated at the apical surface of invaginating mesodermal cells during Drosophila gastrulation. βH-spectrin forms a network of filaments which co-localize with medio-apical actomyosin fibers, in a process that depends on the mesoderm-transcription factor Twist and activation of Rho signaling. βH-spectrin knockdown results in non-ratcheted apical constrictions and inhibition of mesoderm invagination, recapitulating twist mutant embryos. βH-spectrin is thus a key regulator of apical ratcheting during tissue invagination, suggesting that actin cross-linking plays a critical role in this process.
93.
Nanobody-directed targeting of optogenetic tools to study signaling in the primary cilium.
-
Hansen, JN
-
Kaiser, F
-
Klausen, C
-
Stüven, B
-
Chong, R
-
Bönigk, W
-
Mick, DU
-
Möglich, A
-
Jurisch-Yaksi, N
-
Schmidt, FI
-
Wachten, D
Abstract:
Compartmentalization of cellular signaling forms the molecular basis of cellular behavior. The primary cilium constitutes a subcellular compartment that orchestrates signal transduction independent from the cell body. Ciliary dysfunction causes severe diseases, termed ciliopathies. Analyzing ciliary signaling has been challenging due to the lack of tools investigate ciliary signaling. Here, we describe a nanobody-based targeting approach for optogenetic tools in mammalian cells and in vivo in zebrafish to specifically analyze ciliary signaling and function. Thereby, we overcome the loss of protein function observed after fusion to ciliary targeting sequences. We functionally localized modifiers of cAMP signaling, the photo-activated adenylate cyclase bPAC and the light-activated phosphodiesterase LAPD, and the cAMP biosensor mlCNBD-FRET to the cilium. Using this approach, we studied the contribution of spatial cAMP signaling in controlling cilia length. Combining optogenetics with nanobody-based targeting will pave the way to the molecular understanding of ciliary function in health and disease.
94.
Long-Range Optogenetic Control of Axon Guidance Overcomes Developmental Boundaries and Defects.
Abstract:
Axons connect neurons together, establishing the wiring architecture of neuronal networks. Axonal connectivity is largely built during embryonic development through highly constrained processes of axon guidance, which have been extensively studied. However, the inability to control axon guidance, and thus neuronal network architecture, has limited investigation of how axonal connections influence subsequent development and function of neuronal networks. Here, we use zebrafish motor neurons expressing a photoactivatable Rac1 to co-opt endogenous growth cone guidance machinery to precisely and non-invasively direct axon growth using light. Axons can be guided over large distances, within complex environments of living organisms, overriding competing endogenous signals and redirecting axons across potent repulsive barriers to construct novel circuitry. Notably, genetic axon guidance defects can be rescued, restoring functional connectivity. These data demonstrate that intrinsic growth cone guidance machinery can be co-opted to non-invasively build new connectivity, allowing investigation of neural network dynamics in intact living organisms.
95.
ERK-Mediated Mechanochemical Waves Direct Collective Cell Polarization.
Abstract:
During collective migration of epithelial cells, the migration direction is aligned over a tissue-scale expanse. Although the collective cell migration is known to be directed by mechanical forces transmitted via cell-cell junctions, it remains elusive how the intercellular force transmission is coordinated with intracellular biochemical signaling to achieve collective movements. Here, we show that intercellular coupling of extracellular signal-regulated kinase (ERK)-mediated mechanochemical feedback yields long-distance transmission of guidance cues. Mechanical stretch activates ERK through epidermal growth factor receptor (EGFR) activation, and ERK activation triggers cell contraction. The contraction of the activated cell pulls neighboring cells, evoking another round of ERK activation and contraction in the neighbors. Furthermore, anisotropic contraction based on front-rear polarization guarantees unidirectional propagation of ERK activation, and in turn, the ERK activation waves direct multicellular alignment of the polarity, leading to long-range ordered migration. Our findings reveal that mechanical forces mediate intercellular signaling underlying sustained transmission of guidance cues for collective cell migration.
96.
CofActor: A light- and stress-gated optogenetic clustering tool to study disease-associated cytoskeletal dynamics in living cells.
Abstract:
The hallmarks of neurodegenerative diseases, including neural fibrils, reactive oxygen species (ROS), and cofilin-actin rods, present numerous challenges in the development of in vivo diagnostic tools. Biomarkers such as amyloid β (Aβ) fibrils and Tau tangles in Alzheimer's disease (AD) are accessible only via invasive cerebrospinal fluid assays, and ROS can be fleeting and challenging to monitor in vivo. Although remaining a challenge for in vivo detection, the protein-protein interactions underlying these disease-specific biomarkers present opportunities for the engineering of in vitro pathology-sensitive biosensors. These tools can be useful for investigating early-stage events in neurodegenerative diseases in both cellular and animal models and may lead to clinically useful reagents. Here, we report a light- and cellular stress-gated protein switch based on cofilin-actin rod formation, occurring in stressed neurons in the AD brain and following ischemia. By coupling the stress-sensitive cofilin-actin interaction with the light-responsive Cry2-CIB blue-light switch, referred to hereafter as the "CofActor," we accomplished both light- and energetic/oxidative stress-gated control of this interaction. Site-directed mutagenesis of both cofilin and actin revealed residues critical for sustaining or abrogating the light- and stress-gated response. Of note, the switch response varied, depending on whether cellular stress was generated via glycolytic inhibition or by both glycolytic inhibition and azide-induced ATP depletion. We also demonstrate light- and cellular stress-gated switch function in cultured hippocampal neurons. CofActor holds promise for the tracking of early-stage events in neurodegeneration and for investigating actin's interactions with other proteins during cellular stress.
97.
CLIC4 is a cytokinetic cleavage furrow protein that regulates cortical cytoskeleton stability during cell division.
Abstract:
During mitotic cell division, the actomyosin cytoskeleton undergoes several dynamic changes that play key roles in progression through mitosis. Although the regulators of cytokinetic ring formation and contraction are well established, proteins that regulate cortical stability during anaphase and telophase have been understudied. Here, we describe a role for CLIC4 in regulating actin and actin regulators at the cortex and cytokinetic cleavage furrow during cytokinesis. We first describe CLIC4 as a new component of the cytokinetic cleavage furrow that is required for successful completion of mitotic cell division. We also demonstrate that CLIC4 regulates the remodeling of the sub-plasma-membrane actomyosin network within the furrow by recruiting MST4 kinase (also known as STK26) and regulating ezrin phosphorylation. This work identifies and characterizes new molecular players involved in regulating cortex stiffness and blebbing during the late stages of cytokinetic furrowing.
98.
Optogenetic stimulation of phosphoinositides reveals a critical role of primary cilia in eye pressure regulation.
Abstract:
Glaucoma is a group of progressive optic neuropathies that cause irreversible vision loss. Although elevated intraocular pressure (IOP) is associated with the development and progression of glaucoma, the mechanisms for its regulation are not well understood. Here, we have designed CIBN/CRY2-based optogenetic constructs to study phosphoinositide regulation within distinct subcellular compartments. We show that stimulation of CRY2-OCRL, an inositol 5-phosphatase, increases aqueous humor outflow and lowers IOP in vivo, which is caused by a calcium-dependent actin rearrangement of the trabecular meshwork cells. Phosphoinositide stimulation also rescues defective aqueous outflow and IOP in a Lowe syndrome mouse model but not in IFT88fl/fl mice that lack functional cilia. Thus, our study is the first to use optogenetics to regulate eye pressure and demonstrate that tight regulation of phosphoinositides is critical for aqueous humor homeostasis in both normal and diseased eyes.
99.
Combining optogenetics with sensitive FRET imaging to monitor local microtubule manipulations.
Abstract:
Optogenetic methods for switching molecular states in cells are increasingly prominent tools in life sciences. Förster Resonance Energy Transfer (FRET)-based sensors can provide quantitative and sensitive readouts of altered cellular biochemistry, e.g. from optogenetics. However, most of the light-inducible domains respond to the same wavelength as is required for excitation of popular CFP/YFP-based FRET pairs, rendering the techniques incompatible with each other. In order to overcome this limitation, we red-shifted an existing CFP/YFP-based OP18 FRET sensor (COPY) by employing an sYFP2 donor and mScarlet-I acceptor. Their favorable quantum yield and brightness result in a red-shifted FRET pair with an optimized dynamic range, which could be further enhanced by an R125I point mutation that stimulates intramolecular interactions. The new sensor was named ROPY and it visualizes the interaction between the microtubule regulator stathmin/OP18 and free tubulin heterodimers. We show that through phosphorylation of the ROPY sensor, its tubulin sequestering ability can be locally regulated by photo-activatable Rac1 (PARac1), independent of the FRET readout. Together, ROPY and PARac1 provide spatiotemporal control over free tubulin levels. ROPY/PARac1-based optogenetic regulation of free tubulin levels allowed us to demonstrate that depletion of free tubulin prevents the formation of pioneer microtubules, while local upregulation of tubulin concentration allows localized microtubule extensions to support the lamellipodia.
100.
Actin waves transport RanGTP to the neurite tip to regulate non-centrosomal microtubules in neurons.
Abstract:
Microtubule (MT) is the most abundant cytoskeleton in neurons and controls multiple facets of their development. While the MT-organizing center (MTOC) in mitotic cells is typically located at the centrosome, MTOC in neurons switches to non-centrosomal sites. A handful of cellular components have been shown to promote non-centrosomal MT (ncMT) formation in neurons, yet the regulation mechanism remains unknown. Here we demonstrate that the small GTPase Ran is a key regulator of ncMTs in neurons. Using an optogenetic tool that enables light-induced local production of RanGTP, we demonstrate that RanGTP promotes ncMT plus-end growth along the neurite. Additionally, we discovered that actin waves drive the anterograde transport of RanGTP. Pharmacological disruption of actin waves abolishes the enrichment of RanGTP and reduces growing ncMT plus-ends at the neurite tip. These observations identify a novel regulation mechanism of ncMTs and pinpoint an indirect connection between the actin and MT cytoskeletons in neurons.