Showing 76 - 100 of 233 results
76.
Optogenetic manipulation of cell migration with high spatiotemporal resolution using lattice lightsheet microscopy.
-
Tang, WC
-
Liu, YT
-
Yeh, CH
-
Lu, CH
-
Tu, CH
-
Lin, YL
-
Lin, YC
-
Hsu, TL
-
Gao, L
-
Chang, SW
-
Chen, P
-
Chen, BC
Abstract:
Lattice lightsheet microscopy (LLSM) featuring three-dimensional recording is improved to manipulate cellular behavior with subcellular resolution through optogenetic activation (optoLLSM). A position-controllable Bessel beam as a stimulation source is integrated into the LLSM to achieve spatiotemporal photoactivation by changing the spatial light modulator (SLM) patterns. Unlike the point-scanning in a confocal microscope, the lattice beams are capable of wide-field optical sectioning for optogenetic activation along the Bessel beam path.We show that the energy power required for optogenetic activations is lower than 1 nW (or 24 mWcm-2) for time-lapses of CRY2olig clustering proteins, and membrane ruffling can be induced at different locations within a cell with subcellular resolution through light-triggered recruitment of phosphoinositide 3-kinase. Moreover, with the epidermal growth factor receptor (EGFR) fused with CRY2olig, we are able to demonstrate guided cell migration using optogenetic stimulation for up to 6 h, where 463 imaging volumes are collected, without noticeable cellular damages.
77.
CRY-BARs: Versatile light-gated molecular tools for the remodeling of membrane architectures.
Abstract:
BAR (Bin, Amphiphysin and Rvs) protein domains are responsible for the generation of membrane curvature and represent a critical mechanical component of cellular functions. Thus, BAR domains have great potential as components of membrane-remodeling tools for cell biologists. In this work, we describe the design and implementation of a family of versatile light-gated I-BAR (inverse-BAR) domain containing tools derived from the fusion of the A. thaliana Cryptochrome 2 photoreceptor and I-BAR protein domains ('CRY-BARs') with applications in the remodeling of membrane architectures and the control of cellular dynamics. By taking advantage of the intrinsic membrane binding propensity of the I-BAR domain, CRY-BARs can be used for spatial and temporal control of cellular processes that require induction of membrane protrusions. Using cell lines and primary neuron cultures, we demonstrate here that the CRY-BAR optogenetic tool evokes membrane dynamics changes associated with cellular activity. Moreover, we provide evidence that ezrin, an actin and PIP2 binding protein, acts as a relay between the plasma membrane and the actin cytoskeleton and therefore is an important mediator of switch function. Overall, we propose that CRY-BARs hold promise as a useful addition to the optogenetic toolkit to study membrane remodeling in live cells.
78.
Microtubule disassembly by caspases is an important rate-limiting step of cell extrusion.
Abstract:
The expulsion of dying epithelial cells requires well-orchestrated remodelling steps to maintain tissue sealing. This process, named cell extrusion, has been mostly analysed through the study of actomyosin regulation. Yet, the mechanistic relationship between caspase activation and cell extrusion is still poorly understood. Using the Drosophila pupal notum, a single layer epithelium where extrusions are caspase-dependent, we showed that the initiation of cell extrusion and apical constriction are surprisingly not associated with the modulation of actomyosin concentration and dynamics. Instead, cell apical constriction is initiated by the disassembly of a medio-apical mesh of microtubules which is driven by effector caspases. Importantly, the depletion of microtubules is sufficient to bypass the requirement of caspases for cell extrusion, while microtubule stabilisation strongly impairs cell extrusion. This study shows that microtubules disassembly by caspases is a key rate-limiting step of extrusion, and outlines a more general function of microtubules in epithelial cell shape stabilisation.
79.
Spindle reorientation in response to mechanical stress is an emergent property of the spindle positioning mechanisms.
-
Kelkar, M
-
Bohec, P
-
Smith, MB
-
Sreenivasan, V
-
Lisica, A
-
Valon, L
-
Ferber, E
-
Baum, B
-
Salbreux, G
-
Charras, G
Abstract:
Proper orientation of the mitotic spindle plays a crucial role in embryos, during tissue development, and in adults, where it functions to dissipate mechanical stress to maintain tissue integrity and homeostasis. While mitotic spindles have been shown to reorient in response to external mechanical stresses, the subcellular cues that mediate spindle reorientation remain unclear. Here, we used a combination of optogenetics and computational modeling to investigate how mitotic spindles respond to inhomogeneous tension within the actomyosin cortex. Strikingly, we found that the optogenetic activation of RhoA only influences spindle orientation when it is induced at both poles of the cell. Under these conditions, the sudden local increase in cortical tension induced by RhoA activation reduces pulling forces exerted by cortical regulators on astral microtubules. This leads to a perturbation of the balance of torques exerted on the spindle, which causes it to rotate. Thus, spindle rotation in response to mechanical stress is an emergent phenomenon arising from the interaction between the spindle positioning machinery and the cell cortex.
80.
Precise control of microtubule disassembly in living cells.
-
Liu, GY
-
Chen, SC
-
Lee, GH
-
Shaiv, K
-
Chen, PY
-
Cheng, H
-
Hong, SR
-
Yang, WT
-
Huang, SH
-
Chang, YC
-
Wang, HC
-
Kao, CL
-
Sun, PC
-
Chao, MH
-
Lee, YY
-
Tang, MJ
-
Lin, YC
Abstract:
Microtubules tightly regulate various cellular activities. Our understanding of microtubules is largely based on experiments using microtubule-targeting agents, which, however, are insufficient to dissect the dynamic mechanisms of specific microtubule populations, due to their slow effects on the entire pool of microtubules. To overcome this technological limitation, we have used chemo and optogenetics to disassemble specific microtubule subtypes, including tyrosinated microtubules, primary cilia, mitotic spindles, and intercellular bridges, by rapidly recruiting engineered microtubule-cleaving enzymes onto target microtubules in a reversible manner. Using this approach, we show that acute microtubule disassembly swiftly halts vesicular trafficking and lysosomal dynamics. It also immediately triggers Golgi and ER reorganization and slows the fusion/fission of mitochondria without affecting mitochondrial membrane potential. In addition, cell rigidity is increased after microtubule disruption owing to increased contractile stress fibers. Microtubule disruption furthermore prevents cell division, but does not cause cell death during interphase. Overall, the reported tools facilitate detailed analysis of how microtubules precisely regulate cellular architecture and functions.
81.
Cell division in tissues enables macrophage infiltration.
-
Akhmanova, M
-
Emtenani, S
-
Krueger, D
-
Gyoergy, A
-
Guarda, M
-
Vlasov, M
-
Vlasov, F
-
Akopian, A
-
Ratheesh, A
-
De Renzis, S
-
Siekhaus, DE
Abstract:
Cells migrate through crowded microenvironments within tissues during normal development, immune response, and cancer metastasis. Although migration through pores and tracks in the extracellular matrix (ECM) has been well studied, little is known about cellular traversal into confining cell-dense tissues. We find that embryonic tissue invasion by Drosophila macrophages requires division of an epithelial ectodermal cell at the site of entry. Dividing ectodermal cells disassemble ECM attachment formed by integrin-mediated focal adhesions next to mesodermal cells, allowing macrophages to move their nuclei ahead and invade between two immediately adjacent tissues. Invasion efficiency depends on division frequency, but reduction of adhesion strength allows macrophage entry independently of division. This work demonstrates that tissue dynamics can regulate cellular infiltration.
82.
Local temporal Rac1-GTP nadirs and peaks restrict cell protrusions and retractions.
Abstract:
Cells probe their microenvironment using membrane protrusion-retraction cycles. Spatiotemporal coordination of Rac1 and RhoA GTP-binding activities initiates and reinforces protrusions and retractions, but the control of their finite lifetime remains unclear. We examined the relations of Rac1 and RhoA GTP-binding levels to key protrusion and retraction events, as well as to cell-ECM traction forces at physiologically relevant ECM stiffness. High RhoA-GTP preceded retractions and Rac1-GTP elevation before protrusions. Notable temporal Rac1-GTP nadirs and peaks occurred at the maximal edge velocity of local membrane protrusions and retractions, respectively, followed by declined edge velocity. Moreover, altered local Rac1-GTP consistently preceded similarly altered traction force. Local optogenetic Rac1-GTP perturbations defined a function of Rac1 in restricting protrusions and retractions and in promoting local traction force. Together, we show that Rac1 plays a fundamental role in restricting the size and durability of protrusions and retractions, plausibly in part through controlling traction forces.
83.
Persistent cell migration emerges from a coupling between protrusion dynamics and polarized trafficking.
Abstract:
Migrating cells present a variety of paths, from random to highly directional ones. While random movement can be explained by basal intrinsic activity, persistent movement requires stable polarization. Here, we quantitatively address emergence of persistent migration in (hTERT)-immortalizedRPE1 (retinal pigment epithelial) cells over long timescales. By live cell imaging and dynamic micropatterning, we demonstrate that the Nucleus-Golgi axis aligns with direction of migration leading to efficient cell movement. We show that polarized trafficking is directed toward protrusions with a 20-min delay, and that migration becomes random after disrupting internal cell organization. Eventually, we prove that localized optogenetic Cdc42 activation orients the Nucleus-Golgi axis. Our work suggests that polarized trafficking stabilizes the protrusive activity of the cell, while protrusive activity orients this polarity axis, leading to persistent cell migration. Using a minimal physical model, we show that this feedback is sufficient to recapitulate the quantitative properties of cell migration in the timescale of hours.
84.
The cell polarity determinant Dlg1 facilitates epithelial invagination by promoting tissue-scale mechanical coordination.
Abstract:
Epithelial folding mediated by apical constriction serves as a fundamental mechanism to convert flat epithelial sheets into multilayered structures. It remains unknown whether additional mechanical inputs are required for apical constriction-mediated folding. Using Drosophila mesoderm invagination as a model, we identified an important role for the non-constricting, lateral mesodermal cells adjacent to the constriction domain ('flanking cells') in facilitating epithelial folding. We found that depletion of the basolateral determinant Dlg1 disrupts the transition between apical constriction and invagination without affecting the rate of apical constriction. Strikingly, the observed delay in invagination is associated with ineffective apical myosin contractions in the flanking cells that lead to overstretching of their apical domain. The defects in the flanking cells impede ventral-directed movement of the lateral ectoderm, suggesting reduced mechanical coupling between tissues. Specifically disrupting the flanking cells in wild-type embryos by laser ablation or optogenetic depletion of cortical actin is sufficient to delay the apical constriction-to-invagination transition. Our findings indicate that effective mesoderm invagination requires intact flanking cells and suggest a role for tissue-scale mechanical coupling during epithelial folding.
85.
Optogenetic inhibition of actomyosin reveals mechanical bistability of the mesoderm epithelium during Drosophila mesoderm invagination.
Abstract:
Apical constriction driven by actin and non-muscle myosin II (actomyosin) provides a well-conserved mechanism to mediate epithelial folding. It remains unclear how contractile forces near the apical surface of a cell sheet drive out-of-the-plane bending of the sheet and whether myosin contractility is required throughout folding. By optogenetic-mediated acute inhibition of actomyosin, we find that during Drosophila mesoderm invagination, actomyosin contractility is critical to prevent tissue relaxation during the early, 'priming' stage of folding but is dispensable for the actual folding step after the tissue passes through a stereotyped transitional configuration. This binary response suggests that Drosophila mesoderm is mechanically bistable during gastrulation. Computer modeling analysis demonstrates that the binary tissue response to actomyosin inhibition can be recapitulated in the simulated epithelium that undergoes buckling-like deformation jointly mediated by apical constriction in the mesoderm and in-plane compression generated by apicobasal shrinkage of the surrounding ectoderm. Interestingly, comparison between wild-type and snail mutants that fail to specify the mesoderm demonstrates that the lateral ectoderm undergoes apicobasal shrinkage during gastrulation independently of mesoderm invagination. We propose that Drosophila mesoderm invagination is achieved through an interplay between local apical constriction and mechanical bistability of the epithelium that facilitates epithelial buckling.
86.
A novel mechanism of bulk cytoplasmic transport by cortical dynein in Drosophila ovary.
Abstract:
Cytoplasmic dynein, a major minus-end directed microtubule motor, plays essential roles in eukaryotic cells. Drosophila oocyte growth is mainly dependent on the contribution of cytoplasmic contents from the interconnected sister cells, nurse cells. We have previously shown that cytoplasmic dynein is required for Drosophila oocyte growth and assumed that it simply transports cargoes along microtubule tracks from nurse cells to the oocyte. Here, we report that instead of transporting individual cargoes along stationary microtubules into the oocyte, cortical dynein actively moves microtubules within nurse cells and from nurse cells to the oocyte via the cytoplasmic bridges, the ring canals. This robust microtubule movement is sufficient to drag even inert cytoplasmic particles through the ring canals to the oocyte. Furthermore, replacing dynein with a minus-end directed plant kinesin linked to the actin cortex is sufficient for transporting organelles and cytoplasm to the oocyte and driving its growth. These experiments show that cortical dynein performs bulk cytoplasmic transport by gliding microtubules along the cell cortex and through the ring canals to the oocyte. We propose that the dynein-driven microtubule flow could serve as a novel mode of fast cytoplasmic transport.
87.
Optogenetic EB1 inactivation shortens metaphase spindles by disrupting cortical force-producing interactions with astral microtubules.
Abstract:
Chromosome segregation is accomplished by the mitotic spindle, a bipolar micromachine built primarily from microtubules. Different microtubule populations contribute to spindle function: kinetochore microtubules attach and transmit forces to chromosomes, antiparallel interpolar microtubules support spindle structure, and astral microtubules connect spindle poles to the cell cortex.1,2 In mammalian cells, end-binding (EB) proteins associate with all growing microtubule plus ends throughout the cell cycle and serve as adaptors for diverse +TIPs that control microtubule dynamics and interactions with other intracellular structures.3 Because binding of many +TIPs to EB1 and thus microtubule-end association is switched off by mitotic phosphorylation,4-6 the mitotic function of EBs remains poorly understood. To analyze how EB1 and associated +TIPs on different spindle microtubule populations contribute to mitotic spindle dynamics, we use a light-sensitive EB1 variant, π-EB1, that allows local, acute, and reversible inactivation of +TIP association with growing microtubule ends in live cells.7 We find that acute π-EB1 photoinactivation results in rapid and reversible metaphase spindle shortening and transient relaxation of tension across the central spindle. However, in contrast to interphase, π-EB1 photoinactivation does not inhibit microtubule growth in metaphase but instead increases astral microtubule length and number. Yet in the absence of EB1 activity, astral microtubules fail to engage the cortical dynein/dynactin machinery, and spindle poles move away from regions of π-EB1 photoinactivation. In conclusion, our optogenetic approach reveals mitotic EB1 functions that remain hidden in genetic experiments, likely due to compensatory molecular systems regulating vertebrate spindle dynamics.
88.
Mechanical strain stimulates COPII-dependent trafficking via Rac1.
-
Phuyal, S
-
Djaerff, E
-
Le Roux, A
-
Baker, MJ
-
Fankhauser, D
-
Mahdizadeh, SJ
-
Reiterer, V
-
Kahlhofer, JC
-
Teis, D
-
Kazanietz, MG
-
Geley, S
-
Eriksson, L
-
Roca-Cusachs, P
-
Farhan, H
Abstract:
Secretory trafficking from the endoplasmic reticulum (ER) is subject to regulation by extrinsic and intrinsic factors. While much of the focus has been on biochemical triggers, little is known whether and how the ER is subject to regulation by mechanical signals. Here, we show that COPII-dependent ER-export is regulated by mechanical strain. Mechanotransduction to the ER was mediated via a previously unappreciated ER-localized pool of the small GTPase Rac1. Mechanistically, we show that Rac1 interacts with the small GTPase Sar1 to drive budding of COPII carriers and stimulate ER-to-Golgi transport. Altogether, we establish an unprecedented link between mechanical strain and export from the ER.
89.
Optogenetic relaxation of actomyosin contractility uncovers mechanistic roles of cortical tension during cytokinesis.
-
Yamamoto, K
-
Miura, H
-
Ishida, M
-
Mii, Y
-
Kinoshita, N
-
Takada, S
-
Ueno, N
-
Sawai, S
-
Kondo, Y
-
Aoki, K
Abstract:
Actomyosin contractility generated cooperatively by nonmuscle myosin II and actin filaments plays essential roles in a wide range of biological processes, such as cell motility, cytokinesis, and tissue morphogenesis. However, subcellular dynamics of actomyosin contractility underlying such processes remains elusive. Here, we demonstrate an optogenetic method to induce relaxation of actomyosin contractility at the subcellular level. The system, named OptoMYPT, combines a protein phosphatase 1c (PP1c)-binding domain of MYPT1 with an optogenetic dimerizer, so that it allows light-dependent recruitment of endogenous PP1c to the plasma membrane. Blue-light illumination is sufficient to induce dephosphorylation of myosin regulatory light chains and a decrease in actomyosin contractile force in mammalian cells and Xenopus embryos. The OptoMYPT system is further employed to understand the mechanics of actomyosin-based cortical tension and contractile ring tension during cytokinesis. We find that the relaxation of cortical tension at both poles by OptoMYPT accelerated the furrow ingression rate, revealing that the cortical tension substantially antagonizes constriction of the cleavage furrow. Based on these results, the OptoMYPT system provides opportunities to understand cellular and tissue mechanics.
90.
Two-input protein logic gate for computation in living cells.
Abstract:
Advances in protein design have brought us within reach of developing a nanoscale programming language, in which molecules serve as operands and their conformational states function as logic gates with precise input and output behaviors. Combining these nanoscale computing agents into larger molecules and molecular complexes will allow us to write and execute "code". Here, in an important step toward this goal, we report an engineered, single protein design that is allosterically regulated to function as a 'two-input logic OR gate'. Our system is based on chemo- and optogenetic regulation of focal adhesion kinase. In the engineered FAK, all of FAK domain architecture is retained and key intramolecular interactions between the kinase and the FERM domains are externally controlled through a rapamycin-inducible uniRapR module in the kinase domain and a light-inducible LOV2 module in the FERM domain. Orthogonal regulation of protein function was possible using the chemo- and optogenetic switches. We demonstrate that dynamic FAK activation profoundly increased cell multiaxial complexity in the fibrous extracellular matrix microenvironment and decreased cell motility. This work provides proof-of-principle for fine multimodal control of protein function and paves the way for construction of complex nanoscale computing agents.
91.
Engineering Photoresponsive Ligand Tethers for Mechanical Regulation of Stem Cells.
Abstract:
Regulating stem cell functions by precisely controlling the nanoscale presentation of bioactive ligands has a substantial impact on tissue engineering and regenerative medicine but remains a major challenge. Here it is shown that bioactive ligands can become mechanically "invisible" by increasing their tether lengths to the substrate beyond a critical length, providing a way to regulate mechanotransduction without changing the biochemical conditions. Building on this finding, light switchable tethers are rationally designed, whose lengths can be modulated reversibly by switching a light-responsive protein, pdDronpa, in between monomer and dimer states. This allows the regulation of the adhesion, spreading, and differentiation of stem cells by light on substrates of well-defined biochemical and physical properties. Spatiotemporal regulation of differential cell fates on the same substrate is further demonstrated, which may represent an important step toward constructing complex organoids or mini tissues by spatially defining the mechanical cues of the cellular microenvironment with light.
92.
Cell patterning by secretion-induced plasma membrane flows.
Abstract:
Cells self-organize using reaction-diffusion and fluid-flow principles. Whether bulk membrane flows contribute to cell patterning has not been established. Here, using mathematical modeling, optogenetics, and synthetic probes, we show that polarized exocytosis causes lateral membrane flows away from regions of membrane insertion. Plasma membrane–associated proteins with sufficiently low diffusion and/or detachment rates couple to the flows and deplete from areas of exocytosis. In rod-shaped fission yeast cells, zones of Cdc42 GTPase activity driving polarized exocytosis are limited by GTPase activating proteins (GAPs). We show that membrane flows pattern the GAP Rga4 distribution and that coupling of a synthetic GAP to membrane flows is sufficient to establish the rod shape. Thus, membrane flows induced by Cdc42-dependent exocytosis form a negative feedback restricting the zone of Cdc42 activity.
93.
An active tethering mechanism controls the fate of vesicles.
Abstract:
Vesicle tethers are thought to underpin the efficiency of intracellular fusion by bridging vesicles to their target membranes. However, the interplay between tethering and fusion has remained enigmatic. Here, through optogenetic control of either a natural tether-the exocyst complex-or an artificial tether, we report that tethering regulates the mode of fusion. We find that vesicles mainly undergo kiss-and-run instead of full fusion in the absence of functional exocyst. Full fusion is rescued by optogenetically restoring exocyst function, in a manner likely dependent on the stoichiometry of tether engagement with the plasma membrane. In contrast, a passive artificial tether produces mostly kissing events, suggesting that kiss-and-run is the default mode of vesicle fusion. Optogenetic control of tethering further shows that fusion mode has physiological relevance since only full fusion could trigger lamellipodial expansion. These findings demonstrate that active coupling between tethering and fusion is critical for robust membrane merger.
94.
The effect of substrate stiffness on tensile force transduction in the epithelial monolayers.
Abstract:
In recent years, the importance of mechanical signaling and the cellular mechanical microenvironment in affecting cellular behavior has been widely accepted. Cells in epithelial monolayers are mechanically connected to each other and the underlying extracellular matrix (ECM), forming a highly connected mechanical system subjected to various mechanical cues from their environment, such as the ECM stiffness. Changes in the ECM stiffness have been linked to many pathologies, including tumor formation. However, our understanding of how ECM stiffness and its heterogeneities affect the transduction of mechanical forces in epithelial monolayers is lacking. To investigate this, we used a combination of experimental and computational methods. The experiments were conducted using epithelial cells cultured on an elastic substrate and applying a mechanical stimulus by moving a single cell by micromanipulation. To replicate our experiments computationally and quantify the forces transduced in the epithelium, we developed a new model that described the mechanics of both the cells and the substrate. Our model further enabled the simulations with local stiffness heterogeneities. We found the substrate stiffness to distinctly affect the force transduction as well as the cellular movement and deformation following an external force. Also, we found that local changes in the stiffness can alter the cells’ response to external forces over long distances. Our results suggest that this long-range signaling of the substrate stiffness depends on the cells’ ability to resist deformation. Furthermore, we found that the cell’s elasticity in the apico-basal direction provides a level of detachment between the apical cell-cell junctions and the basal focal adhesions. Our simulation results show potential for increased ECM stiffness, e.g. due to a tumor, to modulate mechanical signaling between cells also outside the stiff region. Furthermore, the developed model provides a good platform for future studies on the interactions between epithelial monolayers and elastic substrates.
95.
Mechanical worrying drives cell migration in crowded environments.
-
Welf, ES
-
Driscoll, MK
-
Sapoznik, E
-
Murali, VS
-
Weems, A
-
Garcia-Arcos, JM
-
Roh-Johnson, MR
-
Dean, KM
-
Piel, M
-
Fiolka, R
-
Danuser, G
Abstract:
Migratory cells navigate through crowded 3D microenvironments in vivo. Amoeboid cells, such as immune cells and some cancer cells, are thought to do so by deforming their bodies to squeeze through tight spaces.1 Yet large populations of nearly spherical amoeboid cells migrate2–4 in microenvironments too dense5,6 to move through without extensive shape deformations. How they do so is unknown. We used high-resolution light-sheet microscopy to visualize metastatic melanoma cells in dense environments, finding that cells maintain a round morphology as they migrate and create a path through which to move via bleb-driven mechanical degradation and subsequent macropinocytosis of extracellular matrix components. Proteolytic degradation of the extracellular matrix via matrix metalloproteinases is not required. Membrane blebs are short-lived relative to the timescale of migration, and thus persistence in their polarization is critical for productive ablation of the extracellular matrix. Interactions between small but long-lived cortical adhesions and collagen at the cell front induce PI-3 Kinase signaling that drive bleb enlargement via branched actin polymerization. Large blebs in turn abrade collagen, creating a feedback between extracellular matrix structure, cell morphology, and cell polarization that results in both path generation and persistent cell movement.
96.
Single-Component Optogenetic Tools for Inducible RhoA GTPase Signaling.
Abstract:
Optogenetic tools are created to control RhoA GTPase, a central regulator of actin organization and actomyosin contractility. RhoA GTPase, or its upstream activator ARHGEF11, is fused to BcLOV4, a photoreceptor that can be dynamically recruited to the plasma membrane by a light-regulated protein-lipid electrostatic interaction with the inner leaflet. Direct membrane recruitment of these proteins induces potent contractile signaling sufficient to separate adherens junctions with as little as one pulse of blue light. Induced cytoskeletal morphology changes are dependent on the alignment of the spatially patterned stimulation with the underlying cell polarization. RhoA-mediated cytoskeletal activation drives yes-associated protein (YAP) nuclear localization within minutes and consequent mechanotransduction verified by YAP-transcriptional enhanced associate domain transcriptional activity. These single-transgene tools do not require protein binding partners for dynamic membrane localization and permit spatiotemporally precise control over RhoA signaling to advance the study of its diverse regulatory roles in cell migration, morphogenesis, and cell cycle maintenance.
97.
Using optogenetics to link myosin patterns to contractile cell behaviors during convergent extension.
Abstract:
Distinct patterns of actomyosin contractility are often associated with particular epithelial tissue shape changes during development. For example, a planar-polarized pattern of myosin II localization regulated by Rho1 signaling during Drosophila body axis elongation is thought to drive cell behaviors that contribute to convergent extension. However, it is not well understood how specific aspects of a myosin pattern influence the multiple cell behaviors, including cell intercalation, cell shape changes, and apical cell area fluctuations, that simultaneously occur during morphogenesis. Here, we developed two optogenetic tools, optoGEF and optoGAP, to activate or deactivate Rho1 signaling, respectively. We used these tools to manipulate myosin patterns at the apical side of the germband epithelium during Drosophila axis elongation and analyzed the effects on contractile cell behaviors. We show that uniform activation or inactivation of Rho1 signaling across the apical surface of the germband is sufficient to disrupt the planar-polarized pattern of myosin at cell junctions on the timescale of 3-5 min, leading to distinct changes in junctional and medial myosin patterns in optoGEF and optoGAP embryos. These two perturbations to Rho1 activity both disrupt axis elongation and cell intercalation but have distinct effects on cell area fluctuations and cell packings that are linked with changes in the medial and junctional myosin pools. These studies demonstrate that acute optogenetic perturbations to Rho1 activity are sufficient to rapidly override the endogenous planar-polarized myosin pattern in the germband during axis elongation. Moreover, our results reveal that the levels of Rho1 activity and the balance between medial and junctional myosin play key roles not only in organizing the cell rearrangements that are known to directly contribute to axis elongation but also in regulating cell area fluctuations and cell packings, which have been proposed to be important factors influencing the mechanics of tissue deformation and flow.
98.
Optogenetic model reveals cell shape regulation through FAK and Fascin.
Abstract:
Cell shape regulation is important but the mechanisms that govern shape are not fully understood, in part due to limited experimental models where cell shape changes and underlying molecular processes can be rapidly and non-invasively monitored in real time. Here, we use an optogenetic tool to activate RhoA in the middle of mononucleated macrophages to induce contraction, resulting in a side with the nucleus that retains its shape and a non-nucleated side which was unable to maintain its shape and collapsed. In cells overexpressing focal adhesion kinase (FAK), the non-nucleated side exhibited a wide flat morphology and was similar in adhesion area to the nucleated side. In cells overexpressing fascin, an actin bundling protein, the non-nucleated side assumed a spherical shape and was similar in height to the nucleated side. This effect of fascin was also observed in fibroblasts even without inducing furrow formation. Based on these results, we conclude that FAK and fascin work together to maintain cell shape by regulating adhesion area and height, respectively, in different cell types.
99.
Rab10-Positive Tubular Structures Represent a Novel Endocytic Pathway That Diverges From Canonical Macropinocytosis in RAW264 Macrophages.
Abstract:
Using the optogenetic photo-manipulation of photoactivatable (PA)-Rac1, remarkable cell surface ruffling and the formation of a macropinocytic cup (premacropinosome) could be induced in the region of RAW264 macrophages irradiated with blue light due to the activation of PA-Rac1. However, the completion of macropinosome formation did not occur until Rac1 was deactivated by the removal of the light stimulus. Following PA-Rac1 deactivation, some premacropinosomes closed into intracellular macropinosomes, whereas many others transformed into long Rab10-positive tubules without forming typical macropinosomes. These Rab10-positive tubules moved centripetally towards the perinuclear Golgi region along microtubules. Surprisingly, these Rab10-positive tubules did not contain any endosome/lysosome compartment markers, such as Rab5, Rab7, or LAMP1, suggesting that the Rab10-positive tubules were not part of the degradation pathway for lysosomes. These Rab10-positive tubules were distinct from recycling endosomal compartments, which are labeled with Rab4, Rab11, or SNX1. These findings suggested that these Rab10-positive tubules may be a part of non-degradative endocytic pathway that has never been known. The formation of Rab10-positive tubules from premacropinosomes was also observed in control and phorbol myristate acetate (PMA)-stimulated macrophages, although their frequencies were low. Interestingly, the formation of Rab10-positive premacropinosomes and tubules was not inhibited by phosphoinositide 3-kinase (PI3K) inhibitors, while the classical macropinosome formation requires PI3K activity. Thus, this study provides evidence to support the existence of Rab10-positive tubules as a novel endocytic pathway that diverges from canonical macropinocytosis.
100.
Endothelial cell invasion is controlled by dactylopodia.
-
Figueiredo, AM
-
Barbacena, P
-
Russo, A
-
Vaccaro, S
-
Ramalho, D
-
Pena, A
-
Lima, AP
-
Ferreira, RR
-
Fidalgo, MA
-
El-Marjou, F
-
Carvalho, Y
-
Vasconcelos, FF
-
Lennon-Dumenil, AM
-
Vignjevic, DM
-
Franco, CA
Abstract:
Sprouting angiogenesis is fundamental for development and contributes to cancer, diabetic retinopathy, and cardiovascular diseases. Sprouting angiogenesis depends on the invasive properties of endothelial tip cells. However, there is very limited knowledge on how tip cells invade into tissues. Here, we show that endothelial tip cells use dactylopodia as the main cellular protrusion for invasion into nonvascular extracellular matrix. We show that dactylopodia and filopodia protrusions are balanced by myosin IIA (NMIIA) and actin-related protein 2/3 (Arp2/3) activity. Endothelial cell-autonomous ablation of NMIIA promotes excessive dactylopodia formation in detriment of filopodia. Conversely, endothelial cell-autonomous ablation of Arp2/3 prevents dactylopodia development and leads to excessive filopodia formation. We further show that NMIIA inhibits Rac1-dependent activation of Arp2/3 by regulating the maturation state of focal adhesions. Our discoveries establish a comprehensive model of how endothelial tip cells regulate its protrusive activity and will pave the way toward strategies to block invasive tip cells during sprouting angiogenesis.