Qr: journal:"bioRxiv"
Showing 101 - 125 of 142 results
101.
Optogenetic spatial patterning of cooperation in yeast populations.
Abstract:
Microbial communities are a siege of complex metabolic interactions such as cooperation and competition for resources. Methods to control such interactions could lead to major advances in our ability to engineer microbial consortia for bioproduction and synthetic biology applications. Here, we used optogenetics to control invertase production in yeast, thereby creating landscapes of cooperator and cheater cells. Yeast cells behave as cooperators (i.e., transform sucrose into glucose, a public “good”) upon blue light illumination or cheaters (i.e., consume glucose produced by cooperators to grow) in the dark. We show that cooperators benefit best from the hexoses they produce when their domain size is constrained between two cut-off length-scales. From an engineering point of view, the system behaves as a band pass filter. The lower limit is the trace of cheaters’ competition for hexoses, while the upper limit is defined by cooperators’ competition for sucrose. Hence, cooperation mostly occurs at the frontiers with cheater cells, which not only compete for hexoses but also cooperate passively by letting sucrose reach cooperators. We anticipate that this optogenetic method could be applied to shape metabolic interactions in a variety of microbial ecosystems.
102.
Optogenetic inhibition of Gα signalling alters and regulates circuit functionality and early circuit formation.
Abstract:
Optogenetic techniques provide genetically targeted, spatially and temporally precise approaches to correlate cellular activities and physiological outcomes. In the nervous system, G-protein-coupled receptors (GPCRs) have essential neuromodulatory functions through binding extracellular ligands to induce intracellular signaling cascades. In this work, we develop and validate a new optogenetic tool that disrupt Gαq signaling through membrane recruitment of a minimal Regulator of G-protein signaling (RGS) domain. This approach, Photo-induced Modulation of Gα protein – Inhibition of Gαq (PiGM-Iq), exhibited potent and selective inhibition of Gαq signaling. We alter the behavior of C. elegans and Drosophila with outcomes consistent with GPCR-Gαq disruption. PiGM-Iq also changes axon guidance in culture dorsal root ganglia neurons in response to serotonin. PiGM-Iq activation leads to developmental deficits in zebrafish embryos and larvae resulting in altered neuronal wiring and behavior. By altering the choice of minimal RGS domain, we also show that this approach is amenable to Gαi signaling.
103.
Light inducible protein degradation in E. coli with LOVtag.
Abstract:
Molecular tools for optogenetic control allow for spatial and temporal regulation of cell behavior. In particular, light controlled protein degradation is a valuable mechanism of regulation because it can be highly modular, used in tandem with other control mechanisms, and maintain functionality throughout growth phases. Here, we engineered LOVtag, a protein tag that can be appended to a protein of interest for inducible degradation in Escherichia coli using blue light. We demonstrate the modularity of LOVtag by using it to tag a range of proteins, including the LacI repressor, CRISPRa activator, and the AcrB efflux pump. Additionally, we demonstrate the utility of pairing the LOVtag with existing optogenetic tools to enhance performance by developing a combined EL222 and LOVtag system. Finally, we use the LOVtag in a metabolic engineering application to demonstrate post-translational control of metabolism. Together, our results highlight the modularity and functionality of the LOVtag system, and introduce a powerful new tool for bacterial optogenetics.
104.
Rac negative feedback links local PIP3 rate-of-change to dynamic control of neutrophil guidance.
Abstract:
To migrate efficiently, neutrophils must polarize their cytoskeletal regulators along a single axis of motion. This polarization process is thought to be mediated through local positive feedback that amplifies leading edge signals and global negative feedback that enables sites of positive feedback to compete for dominance. Though this two-component model efficiently establishes cell polarity, it has potential limitations, including a tendency to “lock” onto a particular direction, limiting the ability of cells to reorient. We use spatially-defined optogenetic control of a leading edge organizer (PI3K) to probe how cells balance “decisiveness” needed to polarize in a single direction with the flexibility needed to respond to new cues. Underlying this balancing act is a local Rac inhibitor that destabilizes the leading edge to promote exploration. We show that this local inhibitor enables cells to process input signal dynamics, linking front stability and orientation to local temporal increases in input signals.
105.
Enhancing Mitochondrial Functions by Optogenetic Clustering.
Abstract:
Known as the powerhouses of cells, mitochondria and its dynamics are important for their functions in cells. Herein, an optogenetic method that controlling mitochondria to form the clusters was developed. The plasmid named CRY2PHR-mCherry-Miro1TM was designed for the optogenetic system. The photoactivable protein CRY2PHR was anchored to mitochondria, via the specific organelle-targeting transmembrane domain Miro1TM. Under blue light illumination, CRY2PHR can form the oligomerization, called puncta. With the illuminated time extended, the puncta can interact, and the mitochondria were found to form clustering with reversibility and spatiotemporal controllability. The mitochondrial functions were found to enhance after the formation of optogenetic mitochondrial clusters. This method presented here provides a way to control mitochondrial clustering and raise mitochondrial functions up.
106.
Precision super-resolution cryo-correlative light and electron microscopy for rapid in situ structural analyses of optogenetically-positioned organelles.
-
Redpath, GMI
-
Rae, J
-
Yao, J
-
Ruan, J
-
Cagigas, MLC
-
Whan, R
-
Hardeman, E
-
Gunning, PW
-
Ananthanarayanan, V
-
Parton, RG
-
Ariotti, N
Abstract:
Unambiguous targeting of cellular structures for in situ cryo-electron microscopy in the heterogeneous, dense, and compacted environment of the cytoplasm remains challenging. Here we have developed a novel cryogenic correlative light and electron microscopy (cryo- CLEM) workflow which combines thin cells grown on a mechanically defined substratum to rapidly analyse organelles and macromolecular complexes in the cell by cryo-electron tomography (cryo-ET). We coupled these advancements with optogenetics to redistribute perinuclear-localised organelles to the cell periphery for cryo-ET. This reliable and robust workflow allows for fast in situ analyses without the requirement for cryo-focused ion beam milling. We have developed a protocol where cells can be frozen, imaged by cryo- fluorescence microscopy and ready for batch cryo-ET within a day.
107.
Enhancing the performance of Magnets photosensors through directed evolution.
Abstract:
Photosensory protein domains are the basis of optogenetic protein engineering. These domains originate from natural sources where they fulfill specific functions ranging from the protection against photooxidative damage to circadian rhythms. When used in synthetic biology, the features of these photosensory domains can be specifically tailored towards the application of interest, enabling their full exploitation for optogenetic regulation in basic research and applied bioengineering. In this work, we develop and apply a simple, yet powerful, directed evolution and high-throughput screening strategy that allows us to alter the most fundamental property of the widely used nMag/pMag photodimerization system: its light sensitivity. We identify a set of mutations located within the photosensory domains, which either increase or decrease the light sensitivity at sub-saturating light intensities, while also improving the dark-to-light fold change in certain variants. For some of these variants, photosensitivity and expression levels could be changed independently, showing that the shape of the light-activity dose-response curve can be tuned and adjusted. We functionally characterize the variants in vivo in bacteria on the single-cell and the population levels. We further show that a subset of these variants can be transferred into the mOptoT7 for gene expression regulation in mammalian cells. We demonstrate increased gene expression levels for low light intensities, resulting in reduced potential phototoxicity in long-term experiments. Our findings expand the applicability of the widely used Magnets photosensors by enabling a tuning towards the needs of specific optogenetic regulation strategies. More generally, our approach will aid optogenetic approaches by making the adaptation of photosensor properties possible to better suit specific experimental or bioprocess needs.
108.
Maximizing protein production by keeping cells at optimal secretory stress levels using real‐time control approaches.
Abstract:
The production of recombinant proteins is a problem of major industrial and pharmaceutical importance. Secretion of the protein by the host cell considerably simplifies downstream purification processes. However, it is also the limiting production step for many hard‐to‐secrete proteins. Current solutions involve extensive chassis engineering to favor trafficking and limit protein degradation triggered by excessive secretion‐ associated stress. Here, we propose instead a regulation‐based strategy in which induction is dynamically adjusted based on the current stress level of the cells. Using a small collection of hard‐to‐secrete proteins and a bioreactor‐based platform with automated cytometry measurements, we demonstrate that the regulation sweet spot is indicated by the appearance of a bimodal distribution of internal protein and of secretory stress levels, when a fraction of the cell population accumulates high amounts of proteins, decreases growth, and faces significant stress, that is, experiences a secretion burn‐out. In these cells, adaptations capabilities are overwhelmed by a too strong production. With these notions, we define an optimal stress level based on physiological readouts. Then, using real‐time control, we demonstrate that a strategy that keeps the stress at optimal levels increases production of a single‐chain antibody by 70%.
109.
Optogenetic control of RelA reveals effect of transcription factor dynamics on downstream gene expression.
Abstract:
Many transcription factors (TFs) translocate to the nucleus with varied dynamic patterns in response to different inputs. A notable example of such behavior is RelA, a subunit of NF-κB, which translocates to the nucleus with either pulsed or sustained dynamics, depending on the stimulus. Our understanding of how these dynamics are interpreted by downstream genes has remained incomplete, partly because ubiquitously used environmental inputs activate other transcriptional regulators in addition to RelA. Here, we use an optogenetic tool, CLASP (controllable light-activated shuttling and plasma membrane sequestration), to control RelA spatiotemporal dynamics in mouse fibroblasts and quantify their effect on downstream genes using RNA-seq. Using RelA-CLASP, we show for the first time that nuclear translocation of RelA, without post-translational modifications or activation of other transcriptional regulators, is sufficient to activate downstream genes. Furthermore, we find that TNFα, a common endogenous input, regulates many genes independently of RelA, and that this gene regulation is different from that induced by RelA-CLASP. Genes responsive to RelA-CLASP show a wide range of dynamics in response to a constant RelA input. We use a simple promoter model to recapitulate these diverse dynamic responses, as well as data collected in response to a pulsed RelA-CLASP input, and extract features of many RelA-responsive promoters. We also pinpoint many genes for which more complex models, involving feedback or multi-step promoters, may be needed to explain their response to constant and pulsed TF inputs. This study introduces a new robust tool for studying mammalian transcriptional regulation and demonstrates the power of optogenetic tools in dissecting the quantitative features of important cellular pathways.
110.
A genetically encoded photo-proximity labeling approach for mapping protein territories.
Abstract:
Studying dynamic biological processes requires approaches compatible with the lifetimes of the biochemical transactions under investigation, which can be very short. We describe a genetically encoded system that allows protein interactomes to be captured using visible light. Our approach involves fusing an engineered flavoprotein to a protein of interest. Brief excitation of the fusion protein leads to local generation of reactive radical species within cell-permeable probes. When combined with quantitative proteomics, the system generates ‘snapshots’ of protein interactions with high temporal resolution. The intrinsic fluorescence of the fusion domain permits correlated imaging and proteomics analyses, a capability that is exploited in several contexts, including defining the protein clients of the major vault protein (MVP). The technology should be broadly useful in the biomedical area.
111.
GPCR-dependent spatiotemporal cAMP generation confers functional specificity in cardiomyocytes and cardiac responses.
Abstract:
Cells interpret a variety of signals through G protein-coupled receptors (GPCRs), and stimulate the generation of second messengers such as cyclic adenosine monophosphate (cAMP). A long-standing puzzle is deciphering how GPCRs elicit different responses, despite generating similar levels of cAMP. We previously showed that GPCRs generate cAMP from both the plasma membrane and the Golgi apparatus. Here, we demonstrate that cardiomyocytes distinguish between subcellular cAMP inputs to cue different outputs. We show that generating cAMP from the Golgi by an optogenetic approach or activated GPCR leads to regulation of a specific PKA target that increases rate of cardiomyocyte relaxation. In contrast, cAMP generation from the plasma membrane activates a different PKA target that increases contractile force. We validated the physiological consequences of these observations in intact zebrafish and mice. Thus, the same GPCR regulates distinct molecular and physiological pathways depending on its subcellular location despite generating cAMP in each case.
112.
Dimerization of iLID Optogenetic Proteins Observed Using 3D Single-Molecule Tracking in Live Bacterial Cells.
Abstract:
3D single molecule tracking microscopy has enabled measurements of protein diffusion in living cells, offering information about protein dynamics and the cellular environment. For example, different diffusive states can be resolved and assigned to protein complexes of different size and composition. However, substantial statistical power and biological validation, often through genetic deletion of binding partners, are required to support diffusive state assignments. When investigating some cellular processes, transient perturbation to protein spatial distributions is preferable to permanent genetic deletion of an essential protein. Optogenetic dimerization systems can be used to manipulate protein spatial distributions which could offer a means to deplete specific diffusive states observed in single molecule tracking experiments. Here, we evaluate the performance of the iLID optogenetic system in living E. coli cells using diffraction-limited microscopy and 3D single molecule tracking. We observed a robust optogenetic response in protein spatial distribution after 488 nm laser activation. Surprisingly, 3D single molecule tracking results indicate activation of the optogenetic response at high intensity wavelengths for which there is evidence of minimal photon absorbance by the LOV2 domain. However, the preactivation response was minimized through the use of iLID system mutants, and titration of protein expression levels.
113.
Optogenetic Maxwell Demon to Exploit Intrinsic Noise and Control Cell Differentiation Despite Time Delays and Extrinsic Variability.
Abstract:
The field of synthetic biology focuses on creating modular components which can be used to generate complex and controllable synthetic biological systems. Unfortunately, the intrinsic noise of gene regulation can be large enough to break these systems. Noise is largely treated as a nuisance and much past effort has been spent to create robust components that are less influenced by noise. However, extensive analysis of noise combined with ‘smart’ microscopy tools and optognenetic actuators can create control opportunities that would be difficult or impossible to achieve in the deterministic setting. In previous work, we proposed an Optogenetic Maxwell’s Demons (OMD) control problem and found that deep understanding and manipulation of noise could create controllers that break symmetry between cells, even when those cells share the same optogenetic input and identical gene regulation circuitry. In this paper, we extend those results to analyze (in silico) the robustness of the OMD control under changes in system volume, with time observation/actuation delays, and subject to parametric model uncertainties.
114.
Biochemical noise enables a single optogenetic input to control identical cells to track asymmetric and asynchronous reference signals.
Abstract:
Optogenetics is a powerful technology to control synthetic gene circuits using external and computer-programmable light inputs. Like all biological processes, these systems are subject to intrinsic noise that arises from the stochastic process of gene regulation at the single-cell level. Many engineers have sought to mitigate this noise by developing more complex embedded bio-circuits, but recent work has shown that noise-exploiting stochastic controllers could enable new control strategies that take advantage of noise, rather than working against it. These noise-exploiting controllers were initially proposed to solve a single-input-multi-output stationary control problem, where symmetry was broken in a means reminiscent to the concept of Maxwell’s Demon. In this paper, we extend those results and show through computation that transient, asymmetric, and asynchronous stochastic control of the single-input-multi-output (SIMO) control problem is posible to achieve by cycling through different controllers in time. We show that such a method is able control two cells to two different periodic fates with different frequencies and different phases despite the use of only one control input.
115.
mTORC2 coordinates the leading and trailing edge cytoskeletal programs during neutrophil migration.
Abstract:
By acting both upstream and downstream of biochemical organizers of the cytoskeleton, physical forces function as central integrators of cell shape and movement. Here we use a combination of genetic, pharmacological, and optogenetic perturbations to probe the role of the conserved mechanoresponsive mTORC2 program in neutrophil polarity and motility. We find that the tension-based inhibition of leading edge signals (Rac, F-actin) that underlies protrusion competition is gated by the kinase-independent role of the complex, whereas the mTORC2 kinase arm is essential for regulation of Rho activity and Myosin II-based contraction at the trailing edge. Cells required mTORC2 for spatial and temporal coordination between the front and back polarity programs and persistent migration under confinement. mTORC2 is in a mechanosensory cascade, but membrane stretch did not suffice to stimulate mTORC2 unless the co-input PIP3 was also present. Our work suggests that different signalling arms of mTORC2 regulate spatially and molecularly divergent cytoskeletal programs allowing efficient coordination of neutrophil shape and movement.
116.
A rich get richer effect governs intracellular condensate size distributions.
Abstract:
Phase separation of biomolecules into condensates has emerged as a ubiquitous mechanism for intracellular organization and impacts many intracellular processes, including reaction pathways through clustering of enzymes and their intermediates. Precise and rapid spatiotemporal control of reactions by condensates requires tuning of their sizes. However, the physical processes that govern the distribution of condensate sizes remain unclear. Here, we utilize a combination of synthetic and native condensates to probe the underlying physical mechanisms determining condensate size. We find that both native nuclear speckles and FUS condensates formed with the synthetic Corelet system obey an exponential size distribution, which can be recapitulated in Monte Carlo simulations of fast nucleation followed by coalescence. By contrast, pathological aggregation of cytoplasmic Huntingtin polyQ protein exhibits a power-law size distribution, with an exponent of −1.41 ± 0.02. These distinct behaviors reflect the relative importance of nucleation and coalescence kinetics: introducing continuous condensate nucleation into the Monte Carlo coarsening simulations gives rise to polyQ-like power-law behavior. We demonstrate that the emergence of power-law distributions under continuous nucleation reflects a “rich get richer” effect, whose extent may play a general role in the determination of condensate size distributions.
117.
Spatio-temporal, optogenetic control of gene expression in organoids.
-
Legnini, I
-
Emmenegger, L
-
Zappulo, A
-
Wurmus, R
-
Martinez, AO
-
Jara, CC
-
Boltengagen, A
-
Hessler, T
-
Mastrobuoni, G
-
Rybak-Wolf, A
-
Kempa, S
-
Zinzen, R
-
Woehler, A
-
Rajewsky, N
Abstract:
Organoids derived from stem cells become increasingly important to study human development and to model disease. However, methods are needed to control and study spatio-temporal patterns of gene expression in organoids. To this aim, we combined optogenetics and gene perturbation technologies to activate or knock-down RNA of target genes, at single-cell resolution and in programmable spatio-temporal patterns. To illustrate the usefulness of our approach, we locally activated Sonic Hedgehog (SHH) signaling in an organoid model for human neurodevelopment. High-resolution spatial transcriptomic and single-cell analyses showed that this local induction was sufficient to generate stereotypically patterned organoids in three dimensions and revealed new insights into SHH’s contribution to gene regulation in neurodevelopment. With this study, we propose optogenetic perturbations in combination with spatial transcriptomics as a powerful technology to reprogram and study cell fates and tissue patterning in organoids.
118.
Oncogenic protein condensates modulate cell signal perception and drug tolerance.
Abstract:
Drug resistance remains a central challenge towards durable cancer therapy, including for cancers driven by the EML4-ALK oncogene. EML4-ALK and related fusion oncogenes form cytoplasmic protein condensates that transmit oncogenic signals through the Ras/Erk pathway. However, whether such condensates play a role in drug response or resistance development is unclear. Here, we applied optogenetic functional profiling to examine how EML4-ALK condensates impact signal transmission through transmembrane receptor tyrosine kinases (RTKs), a common route of resistance signaling. We found that condensates dramatically suppress signaling through activated RTKs including EGFR. Conversely, ALK inhibition restored and hypersensitized RTK signals. Modulation of RTK sensitivity occurred because EML4-ALK condensates sequestered downstream adapters that are required to transduce signals from both EML4-ALK and ligand-stimulated RTKs. Strikingly, EGFR hypersensitization resulted in rapid and pulsatile Erk signal reactivation within 10s of minutes of drug addition. EGFR reactivation originated from paracrine signals from neighboring apoptotic cells, and reactivation could be blocked by inhibition of either EGFR or matrix metalloproteases. Paracrine signals promoted survival during ALK inhibition, and blockade of paracrine signals accelerated cell killing and suppressed drug tolerance. Our results uncover a regulatory role for protein condensates in cancer signaling and drug response and demonstrate the potential of optogenetic profiling for drug discovery based on functional biomarkers in cancer cells.
119.
Mechanical strain stimulates COPII-dependent trafficking via Rac1.
-
Phuyal, S
-
Djaerff, E
-
Le Roux, A
-
Baker, MJ
-
Fankhauser, D
-
Mahdizadeh, SJ
-
Reiterer, V
-
Kahlhofer, JC
-
Teis, D
-
Kazanietz, MG
-
Geley, S
-
Eriksson, L
-
Roca-Cusachs, P
-
Farhan, H
Abstract:
Secretory trafficking from the endoplasmic reticulum (ER) is subject to regulation by extrinsic and intrinsic factors. While much of the focus has been on biochemical triggers, little is known whether and how the ER is subject to regulation by mechanical signals. Here, we show that COPII-dependent ER-export is regulated by mechanical strain. Mechanotransduction to the ER was mediated via a previously unappreciated ER-localized pool of the small GTPase Rac1. Mechanistically, we show that Rac1 interacts with the small GTPase Sar1 to drive budding of COPII carriers and stimulate ER-to-Golgi transport. Altogether, we establish an unprecedented link between mechanical strain and export from the ER.
120.
Quantification of nuclear transport inhibition by SARS-CoV-2 ORF6 using a broadly applicable live-cell dose-response pipeline.
Abstract:
SARS coronavirus ORF6 inhibits the classical nuclear import pathway to antagonize host antiviral responses. Several models were proposed to explain its inhibitory function, but quantitative measurement is needed for model evaluation and refinement. We report a broadly applicable live-cell method for calibrated dose-response characterization of the nuclear transport alteration by a protein of interest. Using this method, we found that SARS-CoV-2 ORF6 is ∼5 times more potent than SARS-CoV-1 ORF6 in inhibiting bidirectional nuclear transport, due to differences in the NUP98-binding C-terminal region that is required for the inhibition. The N-terminal region was also required, but its membrane binding function was dispensable, since loss of the inhibitory function due to N-terminal truncation was rescued by forced oligomerization using a soluble construct. Based on these data, we propose that the hydrophobic N-terminal region drives oligomerization of ORF6 to multivalently cross-link the FG domains of NUP98 at the nuclear pore complex.
121.
Optogenetic operated probiotics to regulate host metabolism by mimicking enteroendocrine.
-
Zhang, X
-
Ma, N
-
Ling, W
-
Pang, G
-
Sun, T
-
Liu, J
-
Pan, H
-
Cui, M
-
Han, C
-
Yang, C
-
Chang, J
-
Huang, X
-
Wang, H
Abstract:
The enteroendocrine system plays an important role in metabolism. The gut microbiome regulates enteroendocrine in an extensive way, arousing attention in biomedicine. However, conventional strategies of enteroendocrine regulation via gut microbiome are usually non-specific or imprecise. Here, an optogenetic operated probiotics system was developed combining synthetic biology and flexible electronics to achieve in situ controllable secretion to mimic enteroendocrine. Firstly, optogenetic engineered Lactococcus lactis (L. lactis) were administrated in the intestinal tract. A wearable optogenetic device was designed to control optical signals remotely. Then, L. lactis could secrete enteroendocrine hormone according to optical signals. As an example, optogenetic L. lactis could secrete glucagon-like peptide-1(GLP-1) under the control of the wearable optogenetic device. To improve the half-life of GLP-1 in vivo, the Fc domain from immunoglobulin was fused. Treated with this strategy, blood glucose, weight and other features were relatively well controlled in rats and mice models. Furthermore, up-conversion microcapsules were introduced to increase the excitation wavelength of the optogenetic system for better penetrability. This strategy has biomedical potential in metabolic diseases therapy by mimicking enteroendocrine.
122.
Intercellular transport of RNA can limit heritable epigenetic changes.
Abstract:
RNAs in circulation carry sequence-specific regulatory information between cells in animal, plant, and host-pathogen systems. Double-stranded RNA (dsRNA) delivered into the extracellular space of the nematode C. elegans accumulates within the germline and reaches progeny. Here we provide evidence for spatial, temporal, and substrate specificity in the transport of dsRNA from parental circulation to progeny. Temporary loss of dsRNA transport resulted in the persistent accumulation of mRNA from a germline gene. The expression of this gene varied among siblings and even between gonad arms within one animal. Perturbing RNA regulation of the gene created new epigenetic states that lasted for many generations. Thus, one role for the transport of dsRNA into the germline in every generation is to limit heritable changes in gene expression.
123.
Activation of endoplasmic reticulum stress via clustering of inner nuclear membrane proteins.
Abstract:
One of the major cellular mechanisms to ensure protein homeostasis is the endoplasmic reticulum (ER) stress response. This pathway is typically triggered by accumulation of misfolded proteins in the ER lumen. Here we describe activation of ER stress via protein aggregation in the cell nucleus. We find in the premature aging disease Hutchinson-Gilford Progeria Syndrome (HGPS) activation of ER stress due to the aggregation of the diseases-causing progerin protein at the nuclear envelope. The presence of nucleoplasmic protein aggregates is sensed and signaled to the ER lumen via immobilization and clustering of theinner nuclear membrane protein SUN2, leading to activation of the Unfolded Protein Response (UPR). These results identify a nuclear trigger of ER stress and they provide insight into the molecular disease mechanisms of HGPS.
124.
The effect of substrate stiffness on tensile force transduction in the epithelial monolayers.
Abstract:
In recent years, the importance of mechanical signaling and the cellular mechanical microenvironment in affecting cellular behavior has been widely accepted. Cells in epithelial monolayers are mechanically connected to each other and the underlying extracellular matrix (ECM), forming a highly connected mechanical system subjected to various mechanical cues from their environment, such as the ECM stiffness. Changes in the ECM stiffness have been linked to many pathologies, including tumor formation. However, our understanding of how ECM stiffness and its heterogeneities affect the transduction of mechanical forces in epithelial monolayers is lacking. To investigate this, we used a combination of experimental and computational methods. The experiments were conducted using epithelial cells cultured on an elastic substrate and applying a mechanical stimulus by moving a single cell by micromanipulation. To replicate our experiments computationally and quantify the forces transduced in the epithelium, we developed a new model that described the mechanics of both the cells and the substrate. Our model further enabled the simulations with local stiffness heterogeneities. We found the substrate stiffness to distinctly affect the force transduction as well as the cellular movement and deformation following an external force. Also, we found that local changes in the stiffness can alter the cells’ response to external forces over long distances. Our results suggest that this long-range signaling of the substrate stiffness depends on the cells’ ability to resist deformation. Furthermore, we found that the cell’s elasticity in the apico-basal direction provides a level of detachment between the apical cell-cell junctions and the basal focal adhesions. Our simulation results show potential for increased ECM stiffness, e.g. due to a tumor, to modulate mechanical signaling between cells also outside the stiff region. Furthermore, the developed model provides a good platform for future studies on the interactions between epithelial monolayers and elastic substrates.
125.
Mechanical worrying drives cell migration in crowded environments.
-
Welf, ES
-
Driscoll, MK
-
Sapoznik, E
-
Murali, VS
-
Weems, A
-
Garcia-Arcos, JM
-
Roh-Johnson, MR
-
Dean, KM
-
Piel, M
-
Fiolka, R
-
Danuser, G
Abstract:
Migratory cells navigate through crowded 3D microenvironments in vivo. Amoeboid cells, such as immune cells and some cancer cells, are thought to do so by deforming their bodies to squeeze through tight spaces.1 Yet large populations of nearly spherical amoeboid cells migrate2–4 in microenvironments too dense5,6 to move through without extensive shape deformations. How they do so is unknown. We used high-resolution light-sheet microscopy to visualize metastatic melanoma cells in dense environments, finding that cells maintain a round morphology as they migrate and create a path through which to move via bleb-driven mechanical degradation and subsequent macropinocytosis of extracellular matrix components. Proteolytic degradation of the extracellular matrix via matrix metalloproteinases is not required. Membrane blebs are short-lived relative to the timescale of migration, and thus persistence in their polarization is critical for productive ablation of the extracellular matrix. Interactions between small but long-lived cortical adhesions and collagen at the cell front induce PI-3 Kinase signaling that drive bleb enlargement via branched actin polymerization. Large blebs in turn abrade collagen, creating a feedback between extracellular matrix structure, cell morphology, and cell polarization that results in both path generation and persistent cell movement.