Showing 1401 - 1425 of 1626 results
1401.
Predictive Spatiotemporal Manipulation of Signaling Perturbations Using Optogenetics.
Abstract:
Recently developed optogenetic methods promise to revolutionize cell biology by allowing signaling perturbations to be controlled in space and time with light. However, a quantitative analysis of the relationship between a custom-defined illumination pattern and the resulting signaling perturbation is lacking. Here, we characterize the biophysical processes governing the localized recruitment of the Cryptochrome CRY2 to its membrane-anchored CIBN partner. We develop a quantitative framework and present simple procedures that enable predictive manipulation of protein distributions on the plasma membrane with a spatial resolution of 5 μm. We show that protein gradients of desired levels can be established in a few tens of seconds and then steadily maintained. These protein gradients can be entirely relocalized in a few minutes. We apply our approach to the control of the Cdc42 Rho GTPase activity. By inducing strong localized signaling perturbation, we are able to monitor the initiation of cell polarity and migration with a remarkable reproducibility despite cell-to-cell variability.
1402.
Optical Control of Peroxisomal Trafficking.
Abstract:
The blue-light-responsive LOV2 domain of Avena sativa phototropin1 (AsLOV2) has been used to regulate activity and binding of diverse protein targets with light. Here, we used AsLOV2 to photocage a peroxisomal targeting sequence, allowing light regulation of peroxisomal protein import. We generated a protein tag, LOV-PTS1, that can be appended to proteins of interest to direct their import to the peroxisome with light. This method provides a means to inducibly trigger peroxisomal protein trafficking in specific cells at user-defined times.
1403.
Correlating in Vitro and in Vivo Activities of Light-Inducible Dimers: A Cellular Optogenetics Guide.
Abstract:
Light-inducible dimers are powerful tools for cellular optogenetics, as they can be used to control the localization and activity of proteins with high spatial and temporal resolution. Despite the generality of the approach, application of light-inducible dimers is not always straightforward, as it is frequently necessary to test alternative dimer systems and fusion strategies before the desired biological activity is achieved. This process is further hindered by an incomplete understanding of the biophysical/biochemical mechanisms by which available dimers behave and how this correlates to in vivo function. To better inform the engineering process, we examined the biophysical and biochemical properties of three blue-light-inducible dimer variants (cryptochrome2 (CRY2)/CIB1, iLID/SspB, and LOVpep/ePDZb) and correlated these characteristics to in vivo colocalization and functional assays. We find that the switches vary dramatically in their dark and lit state binding affinities and that these affinities correlate with activity changes in a variety of in vivo assays, including transcription control, intracellular localization studies, and control of GTPase signaling. Additionally, for CRY2, we observe that light-induced changes in homo-oligomerization can have significant effects on activity that are sensitive to alternative fusion strategies.
1404.
Light-assisted small-molecule screening against protein kinases.
Abstract:
High-throughput live-cell screens are intricate elements of systems biology studies and drug discovery pipelines. Here, we demonstrate an optogenetics-assisted method that avoids the need for chemical activators and reporters, reduces the number of operational steps and increases information content in a cell-based small-molecule screen against human protein kinases, including an orphan receptor tyrosine kinase. This blueprint for all-optical screening can be adapted to many drug targets and cellular processes.
1405.
A critical element of the light-induced quaternary structural changes in YtvA-LOV.
Abstract:
YtvA, a photosensory LOV (light-oxygen-voltage) protein from Bacillus subtilis, exists as a dimer that previously appeared to undergo surprisingly small structural changes after light illumination compared with other light-sensing proteins. However, we now report that light induces significant structural perturbations in a series of YtvA-LOV domain derivatives in which the Jα helix has been truncated or replaced. Results from native gel analysis showed significant mobility changes in these derivatives after light illumination; YtvA-LOV without the Jα helix dimerized in the dark state but existed as a monomer in the light state. The absence of the Jα helix also affected the dark regeneration kinetics and the stability of the flavin mononucleotide (FMN) binding to its binding site. Our results demonstrate an alternative way of photo-induced signal propagation that leads to a bigger functional response through dimer/monomer conversions of the YtvA-LOV than the local disruption of Jα helix in the As-LOV domain.
1406.
An optogenetic system for interrogating the temporal dynamics of Akt.
Abstract:
The dynamic activity of the serine/threonine kinase Akt is crucial for the regulation of diverse cellular functions, but the precise spatiotemporal control of its activity remains a critical issue. Herein, we present a photo-activatable Akt (PA-Akt) system based on a light-inducible protein interaction module of Arabidopsis thaliana cryptochrome2 (CRY2) and CIB1. Akt fused to CRY2phr, which is a minimal light sensitive domain of CRY2 (CRY2-Akt), is reversibly activated by light illumination in several minutes within a physiological dynamic range and specifically regulates downstream molecules and inducible biological functions. We have generated a computational model of CRY2-Akt activation that allows us to use PA-Akt to control the activity quantitatively. The system provides evidence that the temporal patterns of Akt activity are crucial for generating one of the downstream functions of the Akt-FoxO pathway; the expression of a key gene involved in muscle atrophy (Atrogin-1). The use of an optical module with computational modeling represents a general framework for interrogating the temporal dynamics of biomolecules by predictive manipulation of optogenetic modules.
1407.
Optogenetic Control of Gene Expression in Drosophila.
Abstract:
To study the molecular mechanism of complex biological systems, it is important to be able to artificially manipulate gene expression in desired target sites with high precision. Based on the light dependent binding of cryptochrome 2 and a cryptochrome interacting bHLH protein, we developed a split lexA transcriptional activation system for use in Drosophila that allows regulation of gene expression in vivo using blue light or two-photon excitation. We show that this system offers high spatiotemporal resolution by inducing gene expression in tissues at various developmental stages. In combination with two-photon excitation, gene expression can be manipulated at precise sites in embryos, potentially offering an important tool with which to examine developmental processes.
1408.
Optogenetic control of endogenous Ca(2+) channels in vivo.
-
Kyung, T
-
Lee, S
-
Kim, JE
-
Cho, T
-
Park, H
-
Jeong, YM
-
Kim, D
-
Shin, A
-
Kim, S
-
Baek, J
-
Kim, J
-
Kim, NY
-
Woo, D
-
Chae, S
-
Kim, CH
-
Shin, HS
-
Han, YM
-
Kim, D
-
Heo, WD
Abstract:
Calcium (Ca(2+)) signals that are precisely modulated in space and time mediate a myriad of cellular processes, including contraction, excitation, growth, differentiation and apoptosis. However, study of Ca(2+) responses has been hampered by technological limitations of existing Ca(2+)-modulating tools. Here we present OptoSTIM1, an optogenetic tool for manipulating intracellular Ca(2+) levels through activation of Ca(2+)-selective endogenous Ca(2+) release-activated Ca(2+) (CRAC) channels. Using OptoSTIM1, which combines a plant photoreceptor and the CRAC channel regulator STIM1 (ref. 4), we quantitatively and qualitatively controlled intracellular Ca(2+) levels in various biological systems, including zebrafish embryos and human embryonic stem cells. We demonstrate that activating OptoSTIM1 in the CA1 hippocampal region of mice selectively reinforced contextual memory formation. The broad utility of OptoSTIM1 will expand our mechanistic understanding of numerous Ca(2+)-associated processes and facilitate screening for drug candidates that antagonize Ca(2+) signals.
1409.
Photo-activatable Cre recombinase regulates gene expression in vivo.
Abstract:
Techniques allowing precise spatial and temporal control of gene expression in the brain are needed. Herein we describe optogenetic approaches using a photo-activatable Cre recombinase (PA-Cre) to stably modify gene expression in the mouse brain. Blue light illumination for 12 hours via optical fibers activated PA-Cre in the hippocampus, a deep brain structure. Two-photon illumination through a thinned skull window for 100 minutes activated PA-Cre within a sub-millimeter region of cortex. Light activation of PA-Cre may allow permanent gene modification with improved spatiotemporal precision compared to standard methods.
1410.
Labelling and optical erasure of synaptic memory traces in the motor cortex.
Abstract:
Dendritic spines are the major loci of synaptic plasticity and are considered as possible structural correlates of memory. Nonetheless, systematic manipulation of specific subsets of spines in the cortex has been unattainable, and thus, the link between spines and memory has been correlational. We developed a novel synaptic optoprobe, AS-PaRac1 (activated synapse targeting photoactivatable Rac1), that can label recently potentiated spines specifically, and induce the selective shrinkage of AS-PaRac1-containing spines. In vivo imaging of AS-PaRac1 revealed that a motor learning task induced substantial synaptic remodelling in a small subset of neurons. The acquired motor learning was disrupted by the optical shrinkage of the potentiated spines, whereas it was not affected by the identical manipulation of spines evoked by a distinct motor task in the same cortical region. Taken together, our results demonstrate that a newly acquired motor skill depends on the formation of a task-specific dense synaptic ensemble.
1411.
Photo-dynamics of photoactivated adenylyl cyclase TpPAC from the spirochete bacterium Turneriella parva strain H(T).
Abstract:
The photoactivated adenylyl cyclase TpPAC from the spirochete bacterium Turneriella parva was synthesized and the purified recombinant protein was characterized by biochemical and optical spectroscopic methods. TpPAC consists of a BLUF domain (BLUF = Blue Light sensor Using Flavin) and an adenylyl cyclase homology domain (CHD). A light induced cAMP cyclase activity of ≈ 53.3 nmolmg(-1)min(-1) was measured while in the dark the cyclase activity was approximately a factor of 240 lower. The photo-cycling dynamics of the BLUF domain of TpPAC was studied by absorption spectra, fluorescence quantum distribution, and fluorescence lifetime measurements. The quantum efficiency of BLUF domain signaling state formation was found to be ϕs ≈ 0.59. A three-component exponential recovery of the signaling state to the receptor state was observed with the time constants τrec,1 = 4.8s, τrec,2 = 34.2s, and τrec,3 = 293s at 21.3 °C. The protein thermal stability was studied by stepwise sample heating and cooling. An apparent TpPAC melting temperature of ϑm ≈ 46 °C was determined. The photo-degradation of TpPAC in the signaling state was studied by prolonged intense light exposure at 455 nm. An irreversible flavin photo-degradation was observed with quantum yield ϕD ≈ 8.7 × 10(-6).
1412.
A photosensitive degron enables acute light-induced protein degradation in the nervous system.
Abstract:
Acutely inducing degradation enables studying the function of essential proteins. Available techniques target proteins post-translationally, via ubiquitin or by fusing destabilizing domains (degrons), and in some cases degradation is controllable by small molecules. Yet, they are comparably slow, possibly inducing compensatory changes, and do not allow localized protein depletion. The photosensitizer miniature singlet oxygen generator (miniSOG), fused to proteins of interest, provides fast light-induced protein destruction, e.g. affecting neurotransmission within minutes, but the reactive oxygen species (ROS) generated also affect proteins nearby, causing multifaceted phenotypes. A photosensitive degron (psd), recently developed and characterized in yeast, only targets the protein it is fused to, acting quickly as it is ubiquitin-independent, and the B-LID light-inducible degron was similarly shown to affect protein abundance in zebrafish. We implemented the psd in Caenorhabditis elegans and compared it to miniSOG. The psd effectively caused protein degradation within one hour of low intensity blue light (30 μW/mm(2)). Targeting synaptotagmin (SNT-1::tagRFP::psd), required for efficient neurotransmission, reduced locomotion within 15 minutes of illumination and within one hour behavior and miniature postsynaptic currents (mPSCs) were affected almost to the same degree seen in snt-1 mutants. Thus, psd effectively photo-degrades specific proteins, quickly inducing loss-of-function effects without affecting bystander proteins.
1413.
An Engineered Split Intein for Photoactivated Protein Trans-Splicing.
Abstract:
Protein splicing is mediated by inteins that auto-catalytically join two separated protein fragments with a peptide bond. Here we engineered a genetically encoded synthetic photoactivatable intein (named LOVInC), by using the light-sensitive LOV2 domain from Avena sativa as a switch to modulate the splicing activity of the split DnaE intein from Nostoc punctiforme. Periodic blue light illumination of LOVInC induced protein splicing activity in mammalian cells. To demonstrate the broad applicability of LOVInC, synthetic protein systems were engineered for the light-induced reassembly of several target proteins such as fluorescent protein markers, a dominant positive mutant of RhoA, caspase-7, and the genetically encoded Ca2+ indicator GCaMP2. Spatial precision of LOVInC was demonstrated by targeting activity to specific mammalian cells. Thus, LOVInC can serve as a general platform for engineering light-based control for modulating the activity of many different proteins.
1414.
Optogenetic apoptosis: light-triggered cell death.
Abstract:
An optogenetic Bax has been designed that facilitates light-induced apoptosis. We demonstrate that mitochondrial recruitment of a genetically encoded light-responsive Bax results in the release of mitochondrial proteins, downstream caspase-3 cleavage, changes in cellular morphology, and ultimately cell death. Mutagenesis of a key phosphorylatable residue or modification of the C-terminus mitigates background (dark) levels of apoptosis that result from Bax overexpression. The mechanism of optogenetic Bax-mediated apoptosis was explored using a series of small molecules known to interfere with various steps in programmed cell death. Optogenetic Bax appears to form a mitochondrial apoptosis-induced channel analogous to that of endogenous Bax.
1415.
A light-switchable bidirectional expression module allowing simultaneous regulation of multiple genes.
Abstract:
Several light-regulated genetic circuits have been applied to spatiotemporally control transgene expression in mammalian cells. However, simultaneous regulation of multiple genes using one genetic device by light has not yet been reported. In this study, we engineered a bidirectional expression module based on LightOn system. Our data showed that both reporter genes could be regulated at defined and quantitative levels. Simultaneous regulation of four genes was further achieved in cultured cells and mice. Additionally, we successfully utilized the bidirectional expression module to monitor the expression of a suicide gene, showing potential for photodynamic gene therapy. Collectively, we provide a robust and useful tool to simultaneously control multiple genes expression by light, which will be widely used in biomedical research and biotechnology.
1416.
Light generation of intracellular Ca(2+) signals by a genetically encoded protein BACCS.
Abstract:
Ca(2+) signals are highly regulated in a spatiotemporal manner in numerous cellular physiological events. Here we report a genetically engineered blue light-activated Ca(2+) channel switch (BACCS), as an optogenetic tool for generating Ca(2+) signals. BACCS opens Ca(2+)-selective ORAI ion channels in response to light. A BACCS variant, dmBACCS2, combined with Drosophila Orai, elevates the Ca(2+) concentration more rapidly, such that Ca(2+) elevation in mammalian cells is observed within 1 s on light exposure. Using BACCSs, we successfully control cellular events including NFAT-mediated gene expression. In the mouse olfactory system, BACCS mediates light-dependent electrophysiological responses. Furthermore, we generate BACCS mutants, which exhibit fast and slow recovery of intracellular Ca(2+). Thus, BACCSs are a useful optogenetic tool for generating temporally various intracellular Ca(2+) signals with a large dynamic range, and will be applicable to both in vitro and in vivo studies.
1417.
The rhodopsin-guanylyl cyclase of the aquatic fungus Blastocladiella emersonii enables fast optical control of cGMP signaling.
Abstract:
Blastocladiomycota fungi form motile zoospores that are guided by sensory photoreceptors to areas of optimal light conditions. We showed that the microbial rhodopsin of Blastocladiella emersonii is a rhodopsin-guanylyl cyclase (RhGC), a member of a previously uncharacterized rhodopsin class of light-activated enzymes that generate the second messenger cyclic guanosine monophosphate (cGMP). Upon application of a short light flash, recombinant RhGC converted within 8 ms into a signaling state with blue-shifted absorption from which the dark state recovered within 100 ms. When expressed in Xenopus oocytes, Chinese hamster ovary cells, or mammalian neurons, RhGC generated cGMP in response to green light in a light dose-dependent manner on a subsecond time scale. Thus, we propose RhGC as a versatile tool for the optogenetic analysis of cGMP-dependent signaling processes in cell biology and the neurosciences.
1418.
Genome-editing tools for stem cell biology.
Abstract:
Human pluripotent stem cells provide a versatile platform for regenerative studies, drug testing and disease modeling. That the expression of only four transcription factors, Oct4, Klf4, Sox2 and c-Myc (OKSM), is sufficient for generation of induced pluripotent stem cells (iPSCs) from differentiated somatic cells has revolutionized the field and also highlighted the importance of OKSM as targets for genome editing. A number of novel genome-editing systems have been developed recently. In this review, we focus on successful applications of several such systems for generation of iPSCs. In particular, we discuss genome-editing systems based on zinc-finger fusion proteins (ZFs), transcription activator-like effectors (TALEs) and an RNA-guided DNA-specific nuclease, Cas9, derived from the bacterial defense system against viruses that utilizes clustered regularly interspaced short palindromic repeats (CRISPR).
1419.
Investigating neuronal function with optically controllable proteins.
Abstract:
In the nervous system, protein activities are highly regulated in space and time. This regulation allows for fine modulation of neuronal structure and function during development and adaptive responses. For example, neurite extension and synaptogenesis both involve localized and transient activation of cytoskeletal and signaling proteins, allowing changes in microarchitecture to occur rapidly and in a localized manner. To investigate the role of specific protein regulation events in these processes, methods to optically control the activity of specific proteins have been developed. In this review, we focus on how photosensory domains enable optical control over protein activity and have been used in neuroscience applications. These tools have demonstrated versatility in controlling various proteins and thereby cellular functions, and possess enormous potential for future applications in nervous systems. Just as optogenetic control of neuronal firing using opsins has changed how we investigate the function of cellular circuits in vivo, optical control may yet yield another revolution in how we study the circuitry of intracellular signaling in the brain.
1420.
Optimizing optogenetic constructs for control over signaling and cell behaviours.
Abstract:
Optogenetic tools have recently been developed that enable dynamic control over the activities of select signaling proteins. They provide the unique ability to rapidly turn signaling events on or off with subcellular control in living cells and organisms. This capability is leading to new insights into how the spatial and temporal coordination of signaling events governs dynamic cell behaviours such as migration and neurite outgrowth. These tools can also be used to dissect a protein's signaling functions at different organelles. Here we review the properties of photoreceptors from diverse organisms that have been leveraged to control signaling in mammalian cells. We emphasize recent engineering approaches that have been used to create optogenetic constructs with optimized spectral, kinetic, and signaling properties for controlling cell behaviours.
1421.
Manipulation of Interrenal Cell Function in Developing Zebrafish Using Genetically Targeted Ablation and an Optogenetic Tool.
Abstract:
Zebrafish offer an opportunity to study conserved mechanisms underlying the ontogeny and physiology of the hypothalamic-pituitary-adrenal/interrenal axis. As the final effector of the hypothalamic-pituitary-adrenal/interrenal axis, glucocorticoids exert both rapid and long-term regulatory functions. To elucidate their specific effects in zebrafish, transgenic approaches are necessary to complement pharmacological studies. Here, we report a robust approach to specifically manipulate endogenous concentrations of cortisol by targeting heterologous proteins to interrenal cells using a promoter element of the steroidogenic acute regulatory protein. To test this approach, we first used this regulatory region to generate a transgenic line expressing the bacterial nitroreductase protein, which allows conditional targeted ablation of interrenal cells. We demonstrate that this line can be used to specifically ablate interrenal cells, drastically reducing both basal and stress-induced cortisol concentrations. Next, we coupled this regulatory region to an optogenetic actuator, Beggiatoa photoactivated adenylyl cyclase, to increase endogenous cortisol concentrations in a blue light-dependent manner. Thus, our approach allows specific manipulations of steroidogenic interrenal cell activity for studying the effects of both hypo- and hypercortisolemia in zebrafish.
1422.
Applications of hydrogen deuterium exchange (HDX) for the characterization of conformational dynamics in light-activated photoreceptors.
Abstract:
Rational design of optogenetic tools is inherently linked to the understanding of photoreceptor function. Structural analysis of elements involved in signal integration in individual sensor domains provides an initial idea of their mode of operation, but understanding how local structural rearrangements eventually affect signal transmission to output domains requires inclusion of the effector regions in the characterization. However, the dynamic nature of these assemblies renders their structural analysis challenging and therefore a combination of high- and low-resolution techniques is required to appreciate functional aspects of photoreceptors. This review focuses on the potential of hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) for complementing the structural characterization of photoreceptors. In this respect, the ability of HDX-MS to provide information on conformational dynamics and the possibility to address multiple functionally relevant states in solution render this methodology ideally suitable. We highlight recent examples demonstrating the potential of HDX-MS and discuss how these results can help to improve existing optogenetic systems or guide the design of novel optogenetic tools.
1423.
Control of Protein Activity and Cell Fate Specification via Light-Mediated Nuclear Translocation.
Abstract:
Light-activatable proteins allow precise spatial and temporal control of biological processes in living cells and animals. Several approaches have been developed for controlling protein localization with light, including the conditional inhibition of a nuclear localization signal (NLS) with the Light Oxygen Voltage (AsLOV2) domain of phototropin 1 from Avena sativa. In the dark, the switch adopts a closed conformation that sterically blocks the NLS motif. Upon activation with blue light the C-terminus of the protein unfolds, freeing the NLS to direct the protein to the nucleus. A previous study showed that this approach can be used to control the localization and activity of proteins in mammalian tissue culture cells. Here, we extend this result by characterizing the binding properties of a LOV/NLS switch and demonstrating that it can be used to control gene transcription in yeast. Additionally, we show that the switch, referred to as LANS (light-activated nuclear shuttle), functions in the C. elegans embryo and allows for control of nuclear localization in individual cells. By inserting LANS into the C. elegans lin-1 locus using Cas9-triggered homologous recombination, we demonstrated control of cell fate via light-dependent manipulation of a native transcription factor. We conclude that LANS can be a valuable experimental method for spatial and temporal control of nuclear localization in vivo.
1424.
Photoreceptor engineering.
Abstract:
Sensory photoreceptors not only control diverse adaptive responses in Nature, but as light-regulated actuators they also provide the foundation for optogenetics, the non-invasive and spatiotemporally precise manipulation of cellular events by light. Novel photoreceptors have been engineered that establish control by light over manifold biological processes previously inaccessible to optogenetic intervention. Recently, photoreceptor engineering has witnessed a rapid development, and light-regulated actuators for the perturbation of a plethora of cellular events are now available. Here, we review fundamental principles of photoreceptors and light-regulated allostery. Photoreceptors dichotomize into associating receptors that alter their oligomeric state as part of light-regulated allostery and non-associating receptors that do not. A survey of engineered photoreceptors pinpoints light-regulated association reactions and order-disorder transitions as particularly powerful and versatile design principles. Photochromic photoreceptors that are bidirectionally toggled by two light colors augur enhanced spatiotemporal resolution and use as photoactivatable fluorophores. By identifying desirable traits in engineered photoreceptors, we provide pointers for the design of future, light-regulated actuators.
1425.
Photoactivatable CRISPR-Cas9 for optogenetic genome editing.
Abstract:
We describe an engineered photoactivatable Cas9 (paCas9) that enables optogenetic control of CRISPR-Cas9 genome editing in human cells. paCas9 consists of split Cas9 fragments and photoinducible dimerization domains named Magnets. In response to blue light irradiation, paCas9 expressed in human embryonic kidney 293T cells induces targeted genome sequence modifications through both nonhomologous end joining and homology-directed repair pathways. Genome editing activity can be switched off simply by extinguishing the light. We also demonstrate activation of paCas9 in spatial patterns determined by the sites of irradiation. Optogenetic control of targeted genome editing should facilitate improved understanding of complex gene networks and could prove useful in biomedical applications.