Showing 126 - 150 of 253 results
126.
Pathogenic ACVR1R206H activation by Activin A-induced receptor clustering and autophosphorylation.
-
Ramachandran, A
-
Mehić, M
-
Wasim, L
-
Malinova, D
-
Gori, I
-
Blaszczyk, BK
-
Carvalho, DM
-
Shore, EM
-
Jones, C
-
Hyvönen, M
-
Tolar, P
-
Hill, CS
Abstract:
Fibrodysplasia ossificans progressiva (FOP) and diffuse intrinsic pontine glioma (DIPG) are debilitating diseases that share causal mutations in ACVR1, a TGF-β family type I receptor. ACVR1R206H is a frequent mutation in both diseases. Pathogenic signaling via the SMAD1/5 pathway is mediated by Activin A, but how the mutation triggers aberrant signaling is not known. We show that ACVR1 is essential for Activin A-mediated SMAD1/5 phosphorylation and is activated by two distinct mechanisms. Wild-type ACVR1 is activated by the Activin type I receptors, ACVR1B/C. In contrast, ACVR1R206H activation does not require upstream kinases, but is predominantly activated via Activin A-dependent receptor clustering, which induces its auto-activation. We use optogenetics and live-imaging approaches to demonstrate Activin A-induced receptor clustering and show it requires the type II receptors ACVR2A/B. Our data provide molecular mechanistic insight into the pathogenesis of FOP and DIPG by linking the causal activating genetic mutation to disrupted signaling.
127.
Cross-TCR Antagonism Revealed by Optogenetically Tuning the Half-Life of the TCR Ligand Binding.
-
Yousefi, OS
-
Ruggieri, M
-
Idstein, V
-
von Prillwitz, KU
-
Herr, LA
-
Chalupsky, J
-
Köhn, M
-
Weber, W
-
Timmer, J
-
Schamel, WWA
Abstract:
Activation of T cells by agonistic peptide-MHC can be inhibited by antagonistic ones. However, the exact mechanism remains elusive. We used Jurkat cells expressing two different TCRs and tested whether stimulation of the endogenous TCR by agonistic anti-Vβ8 antibodies can be modulated by ligand-binding to the second, optogenetic TCR. The latter TCR uses phytochrome B tetramers (PhyBt) as ligand, the binding half-life of which can be altered by light. We show that this half-life determined whether the PhyBt acted as a second agonist (long half-life), an antagonist (short half-life) or did not have any influence (very short half-life) on calcium influx. A mathematical model of this cross-antagonism shows that a mechanism based on an inhibitory signal generated by early recruitment of a phosphatase and an activating signal by later recruitment of a kinase explains the data.
128.
Optogenetic Control of Non-Apoptotic Cell Death.
-
He, L
-
Huang, Z
-
Huang, K
-
Chen, R
-
Nguyen, NT
-
Wang, R
-
Cai, X
-
Huang, Z
-
Siwko, S
-
Walker, JR
-
Han, G
-
Zhou, Y
-
Jing, J
Abstract:
Herein, a set of optogenetic tools (designated LiPOP) that enable photoswitchable necroptosis and pyroptosis in live cells with varying kinetics, is introduced. The LiPOP tools allow reconstruction of the key molecular steps involved in these two non-apoptotic cell death pathways by harnessing the power of light. Further, the use of LiPOPs coupled with upconversion nanoparticles or bioluminescence is demonstrated to achieve wireless optogenetic or chemo-optogenetic killing of cancer cells in multiple mouse tumor models. LiPOPs can trigger necroptotic and pyroptotic cell death in cultured prokaryotic or eukaryotic cells and in living animals, and set the stage for studying the role of non-apoptotic cell death pathways during microbial infection and anti-tumor immunity.
129.
Quantifying persistence in the T-cell signaling network using an optically controllable antigen receptor.
Abstract:
T cells discriminate between healthy and infected cells with remarkable sensitivity when mounting an immune response, which is hypothesized to depend on T cells combining stimuli from multiple antigen-presenting cell interactions into a more potent response. To quantify the capacity for T cells to accomplish this, we have developed an antigen receptor that is optically tunable within cell conjugates, providing control over the duration, and intensity of intracellular T-cell signaling. We observe limited persistence within the T-cell intracellular network on disruption of receptor input, with signals dissipating entirely in ~15 min, and directly show sustained proximal receptor signaling is required to maintain gene transcription. T cells thus primarily accumulate the outputs of gene expression rather than integrate discrete intracellular signals. Engineering optical control in a clinically relevant chimeric antigen receptor (CAR), we show that this limited signal persistence can be exploited to increase CAR-T cell activation threefold using pulsatile stimulation. Our results are likely to apply more generally to the signaling dynamics of other cellular networks.
130.
Dynamics and heterogeneity of Erk-induced immediate-early gene expression.
Abstract:
Many canonical signaling pathways exhibit complex time-varying responses, yet how minutes-timescale pulses of signaling interact with the dynamics of transcription and gene expression remains poorly understood. Erk-induced immediate early gene (IEG) expression is a model of this interface, exemplifying both dynamic pathway activity and a rapid, potent transcriptional response. Here, we quantitatively characterize IEG expression downstream of dynamic Erk stimuli in individual cells. We find that IEG expression responds rapidly to acute changes in Erk activity, but only in a sub-population of stimulus-responsive cells. We find that while Erk activity partially predicts IEG expression, a majority of response heterogeneity is independent of Erk and can be rapidly tuned by different mitogenic stimuli and parallel signaling pathways. We extend our findings to an in vivo context, the mouse epidermis, where we observe heterogenous immediate-early gene accumulation in both fixed tissue and single-cell RNA-sequencing data. Our results demonstrate that signaling dynamics can be faithfully transmitted to gene expression and suggest that the signaling-responsive population is an important parameter for interpreting gene expression responses.
131.
Vertebrate cells differentially interpret ciliary and extraciliary cAMP.
Abstract:
Hedgehog pathway components and select G protein-coupled receptors (GPCRs) localize to the primary cilium, an organelle specialized for signal transduction. We investigated whether cells distinguish between ciliary and extraciliary GPCR signaling. To test whether ciliary and extraciliary cyclic AMP (cAMP) convey different information, we engineered optogenetic and chemogenetic tools to control the subcellular site of cAMP generation. Generating equal amounts of ciliary and cytoplasmic cAMP in zebrafish and mammalian cells revealed that ciliary cAMP, but not cytoplasmic cAMP, inhibited Hedgehog signaling. Modeling suggested that the distinct geometries of the cilium and cell body differentially activate local effectors. The search for effectors identified a ciliary pool of protein kinase A (PKA). Blocking the function of ciliary PKA, but not extraciliary PKA, activated Hedgehog signal transduction and reversed the effects of ciliary cAMP. Therefore, cells distinguish ciliary and extraciliary cAMP using functionally and spatially distinct pools of PKA, and different subcellular pools of cAMP convey different information.
132.
Synthetic Protein Condensates That Inducibly Recruit and Release Protein Activity in Living Cells.
Abstract:
Compartmentation of proteins into biomolecular condensates or membraneless organelles formed by phase separation is an emerging principle for the regulation of cellular processes. Creating synthetic condensates that accommodate specific intracellular proteins on demand would have various applications in chemical biology, cell engineering, and synthetic biology. Here, we report the construction of synthetic protein condensates capable of recruiting and/or releasing proteins of interest in living mammalian cells in response to a small molecule or light. By a modular combination of a tandem fusion of two oligomeric proteins, which forms phase-separated synthetic protein condensates in cells, with a chemically induced dimerization tool, we first created a chemogenetic protein condensate system that can rapidly recruit target proteins from the cytoplasm to the condensates by addition of a small-molecule dimerizer. We next coupled the protein-recruiting condensate system with an engineered proximity-dependent protease, which gave a second protein condensate system wherein target proteins previously expressed inside the condensates are released into the cytoplasm by small-molecule-triggered protease recruitment. Furthermore, an optogenetic condensate system that allows reversible release and sequestration of protein activity in a repeatable manner using light was constructed successfully. These condensate systems were applicable to control protein activity and cellular processes such as membrane ruffling and ERK signaling in a time scale of minutes. This proof-of-principle work provides a new platform for chemogenetic and optogenetic control of protein activity in mammalian cells and represents a step toward tailor-made engineering of synthetic protein condensate-based soft materials with various functionalities for biological and biomedical applications.
133.
Optogenetic delivery of trophic signals in a genetic model of Parkinson's disease.
-
Ingles-Prieto, A
-
Furthmann, N
-
Crossman, SH
-
Tichy, AM
-
Hoyer, N
-
Petersen, M
-
Zheden, V
-
Biebl, J
-
Reichhart, E
-
Gyoergy, A
-
Siekhaus, DE
-
Soba, P
-
Winklhofer, KF
-
Janovjak, H
Abstract:
Optogenetics has been harnessed to shed new mechanistic light on current and future therapeutic strategies. This has been to date achieved by the regulation of ion flow and electrical signals in neuronal cells and neural circuits that are known to be affected by disease. In contrast, the optogenetic delivery of trophic biochemical signals, which support cell survival and are implicated in degenerative disorders, has never been demonstrated in an animal model of disease. Here, we reengineered the human and Drosophila melanogaster REarranged during Transfection (hRET and dRET) receptors to be activated by light, creating one-component optogenetic tools termed Opto-hRET and Opto-dRET. Upon blue light stimulation, these receptors robustly induced the MAPK/ERK proliferative signaling pathway in cultured cells. In PINK1B9 flies that exhibit loss of PTEN-induced putative kinase 1 (PINK1), a kinase associated with familial Parkinson's disease (PD), light activation of Opto-dRET suppressed mitochondrial defects, tissue degeneration and behavioral deficits. In human cells with PINK1 loss-of-function, mitochondrial fragmentation was rescued using Opto-dRET via the PI3K/NF-кB pathway. Our results demonstrate that a light-activated receptor can ameliorate disease hallmarks in a genetic model of PD. The optogenetic delivery of trophic signals is cell type-specific and reversible and thus has the potential to inspire novel strategies towards a spatio-temporal regulation of tissue repair.
134.
T cells selectively filter oscillatory signals on the minutes timescale.
Abstract:
T cells experience complex temporal patterns of stimulus via receptor-ligand-binding interactions with surrounding cells. From these temporal patterns, T cells are able to pick out antigenic signals while establishing self-tolerance. Although features such as duration of antigen binding have been examined, our understanding of how T cells interpret signals with different frequencies or temporal stimulation patterns is relatively unexplored. We engineered T cells to respond to light as a stimulus by building an optogenetically controlled chimeric antigen receptor (optoCAR). We discovered that T cells respond to minute-scale oscillations of activation signal by stimulating optoCAR T cells with tunable pulse trains of light. Systematically scanning signal oscillation period from 1 to 150 min revealed that expression of CD69, a T cell activation marker, reached a local minimum at a period of ∼25 min (corresponding to 5 to 15 min pulse widths). A combination of inhibitors and genetic knockouts suggest that this frequency filtering mechanism lies downstream of the Erk signaling branch of the T cell response network and may involve a negative feedback loop that diminishes Erk activity. The timescale of CD69 filtering corresponds with the duration of T cell encounters with self-peptide-presenting APCs observed via intravital imaging in mice, indicating a potential functional role for temporal filtering in vivo. This study illustrates that the T cell signaling machinery is tuned to temporally filter and interpret time-variant input signals in discriminatory ways.
135.
Control of SRC molecular dynamics encodes distinct cytoskeletal responses by specifying signaling pathway usage.
-
Kerjouan, A
-
Boyault, C
-
Oddou, C
-
Hiriart-Bryant, E
-
Grichine, A
-
Kraut, A
-
Pezet, M
-
Balland, M
-
Faurobert, E
-
Bonnet, I
-
Coute, Y
-
Fourcade, B
-
Albiges-Rizo, C
-
Destaing, O
Abstract:
Upon activation by different transmembrane receptors, the same signaling protein can induce distinct cellular responses. A way to decipher the mechanisms of such pleiotropic signaling activity is to directly manipulate the decision-making activity that supports the selection between distinct cellular responses. We developed an optogenetic probe (optoSRC) to control SRC signaling, an example of a pleiotropic signaling node, and we demonstrated its ability to generate different acto-adhesive structures (lamellipodia or invadosomes) upon distinct spatio-temporal control of SRC kinase activity. The occurrence of each acto-adhesive structure was simply dictated by the dynamics of optoSRC nanoclusters in adhesive sites, which were dependent on the SH3 and Unique domains of the protein. The different decision-making events regulated by optoSRC dynamics induced distinct downstream signaling pathways, which we characterized using time-resolved proteomic and network analyses. Collectively, by manipulating the molecular mobility of SRC kinase activity, these experiments reveal the pleiotropy-encoding mechanism of SRC signaling.
136.
TopBP1 assembles nuclear condensates to switch on ATR signaling.
Abstract:
ATR checkpoint signaling is crucial for cellular responses to DNA replication impediments. Using an optogenetic platform, we show that TopBP1, the main activator of ATR, self-assembles extensively to yield micrometer-sized condensates. These opto-TopBP1 condensates are functional entities organized in tightly packed clusters of spherical nano-particles. TopBP1 condensates are reversible, occasionally fuse, and co-localize with TopBP1 partner proteins. We provide evidence that TopBP1 condensation is a molecular switch that amplifies ATR activity to phosphorylate checkpoint kinase 1 (Chk1) and slow down replication forks. Single amino acid substitutions of key residues in the intrinsically disordered ATR activation domain disrupt TopBP1 condensation and consequently ATR/Chk1 signaling. In physiologic salt concentration and pH, purified TopBP1 undergoes liquid-liquid phase separation in vitro. We propose that the actuation mechanism of ATR signaling is the assembly of TopBP1 condensates driven by highly regulated multivalent and cooperative interactions.
137.
Optogenetic control of small GTPases reveals RhoA mediates intracellular calcium signaling.
Abstract:
Rho/Ras family small GTPases are known to regulate numerous cellular processes, including cytoskeletal reorganization, cell proliferation, and cell differentiation. These processes are also controlled by Ca2+, and consequently, crosstalk between these signals is considered likely. However, systematic quantitative evaluation has not yet been reported. To fill this gap, we constructed optogenetic tools to control the activity of small GTPases (RhoA, Rac1, Cdc42, Ras, Rap, and Ral) using an improved light-inducible dimer system (iLID). We characterized these optogenetic tools with genetically encoded red fluorescence intensity-based small GTPase biosensors and confirmed these optogenetic tools' specificities. Using these optogenetic tools, we investigated calcium mobilization immediately after small GTPase activation. Unexpectedly, we found that a transient intracellular calcium elevation was specifically induced by RhoA activation in RPE1 and HeLa cells. RhoA activation also induced transient intracellular calcium elevation in MDCK and HEK293T cells, suggesting that generally RhoA induces calcium signaling. Interestingly, the molecular mechanisms linking RhoA activation to calcium increases were shown to be different among the different cell types: In RPE1 and HeLa cells, RhoA activated phospholipase C epsilon (PLCε) at the plasma membrane, which in turn induced Ca2+ release from the endoplasmic reticulum (ER). The RhoA-PLCε axis induced calcium-dependent NFAT nuclear translocation, suggesting it does activate intracellular calcium signaling. Conversely, in MDCK and HEK293T cells, RhoA-ROCK-myosin II axis induced the calcium transients. These data suggest universal coordination of RhoA and calcium signaling in cellular processes, such as cellular contraction and gene expression.
138.
Optogenetic Control of the BMP Signaling Pathway.
Abstract:
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor β (TGFβ) superfamily and have crucial roles during development; including mesodermal patterning and specification of renal, hepatic, and skeletal tissues. In vitro developmental models currently rely upon costly and unreliable recombinant BMP proteins that do not enable dynamic or precise activation of the BMP signaling pathway. Here, we report the development of an optogenetic BMP signaling system (optoBMP) that enables rapid induction of the canonical BMP signaling pathway driven by illumination with blue light. We demonstrate the utility of the optoBMP system in multiple human cell lines to initiate signal transduction through phosphorylation and nuclear translocation of SMAD1/5, leading to upregulation of BMP target genes including Inhibitors of DNA binding ID2 and ID4. Furthermore, we demonstrate how the optoBMP system can be used to fine-tune activation of the BMP signaling pathway through variable light stimulation. Optogenetic control of BMP signaling will enable dynamic and high-throughput intervention across a variety of applications in cellular and developmental systems.
139.
Multichromatic Control of Signaling Pathways in Mammalian Cells.
Abstract:
The precise control of signaling proteins is a prerequisite to decipher the complexity of the signaling network and to reveal and to study pathways involved in regulating cellular metabolism and gene expression. Optogenetic approaches play an emerging role as they enable the spatiotemporal control of signaling processes. Herein, a multichromatic system is developed by combining the blue light cryptochrome 2 system and the red/far-red light phytochrome B system. The use of three wavelengths allows the orthogonal control of the RAF/ERK and the AKT signaling pathway. Continuous exposure of cells to blue light leads to activation of AKT while simultaneous pulses of red and far-red light enable the modulation of ERK signaling in cells with constantly active AKT signaling. The optimized, orthogonal multichromatic system presented here is a valuable tool to better understand the fine grained and intricate processes involved in cell fate decisions.
140.
Optical control of ERK and AKT signaling promotes axon regeneration and functional recovery of PNS and CNS in Drosophila.
Abstract:
Neuroregeneration is a dynamic process synergizing the functional outcomes of multiple signaling circuits. Channelrhodopsin-based optogenetics shows the feasibility of stimulating neural repair but does not pin down specific signaling cascades. Here, we utilized optogenetic systems, optoRaf and optoAKT, to delineate the contribution of the ERK and AKT signaling pathways to neuroregeneration in live Drosophila larvae. We showed that optoRaf or optoAKT activation not only enhanced axon regeneration in both regeneration-competent and -incompetent sensory neurons in the peripheral nervous system but also allowed temporal tuning and proper guidance of axon regrowth. Furthermore, optoRaf and optoAKT differ in their signaling kinetics during regeneration, showing a gated versus graded response, respectively. Importantly in the central nervous system, their activation promotes axon regrowth and functional recovery of the thermonociceptive behavior. We conclude that non-neuronal optogenetics target damaged neurons and signaling subcircuits, providing a novel strategy in the intervention of neural damage with improved precision.
141.
Light-Regulated allosteric switch enables temporal and subcellular control of enzyme activity.
-
Shaaya, M
-
Fauser, J
-
Zhurikhina, A
-
Conage-Pough, JE
-
Huyot, V
-
Brennan, M
-
Flower, CT
-
Matsche, J
-
Khan, S
-
Natarajan, V
-
Rehman, J
-
Kota, P
-
White, FM
-
Tsygankov, D
-
Karginov, AV
Abstract:
Engineered allosteric regulation of protein activity provides significant advantages for the development of robust and broadly applicable tools. However, the application of allosteric switches in optogenetics has been scarce and suffers from critical limitations. Here, we report an optogenetic approach that utilizes an engineered Light-Regulated (LightR) allosteric switch module to achieve tight spatiotemporal control of enzymatic activity. Using the tyrosine kinase Src as a model, we demonstrate efficient regulation of the kinase and identify temporally distinct signaling responses ranging from seconds to minutes. LightR-Src off-kinetics can be tuned by modulating the LightR photoconversion cycle. A fast cycling variant enables the stimulation of transient pulses and local regulation of activity in a selected region of a cell. The design of the LightR module ensures broad applicability of the tool, as we demonstrate by achieving light-mediated regulation of Abl and bRaf kinases as well as Cre recombinase.
142.
Optogenetic activation of heterotrimeric G-proteins by LOV2GIVe, a rationally engineered modular protein.
Abstract:
Heterotrimeric G-proteins are signal transducers involved in mediating the action of many natural extracellular stimuli as well as of many therapeutic agents. Non-invasive approaches to manipulate the activity of G-proteins with high precision are crucial to understand their regulation in space and time. Here, we developed LOV2GIVe, an engineered modular protein that allows the activation of heterotrimeric G-proteins with blue light. This optogenetic construct relies on a versatile design that differs from tools previously developed for similar purposes, i.e. metazoan opsins, which are light-activated GPCRs. Instead, LOV2GIVe consists of the fusion of a G-protein activating peptide derived from a non-GPCR regulator of G-proteins to a small plant protein domain, such that light uncages the G-protein activating module. Targeting LOV2GIVe to cell membranes allowed for light-dependent activation of Gi proteins in different experimental systems. In summary, LOV2GIVe expands the armamentarium and versatility of tools available to manipulate heterotrimeric G-protein activity.
143.
Optogenetic control of protein binding using light-switchable nanobodies.
Abstract:
A growing number of optogenetic tools have been developed to reversibly control binding between two engineered protein domains. In contrast, relatively few tools confer light-switchable binding to a generic target protein of interest. Such a capability would offer substantial advantages, enabling photoswitchable binding to endogenous target proteins in cells or light-based protein purification in vitro. Here, we report the development of opto-nanobodies (OptoNBs), a versatile class of chimeric photoswitchable proteins whose binding to proteins of interest can be enhanced or inhibited upon blue light illumination. We find that OptoNBs are suitable for a range of applications including reversibly binding to endogenous intracellular targets, modulating signaling pathway activity, and controlling binding to purified protein targets in vitro. This work represents a step towards programmable photoswitchable regulation of a wide variety of target proteins.
144.
Heterogeneous somatostatin-expressing neuron population in mouse ventral tegmental area.
-
Nagaeva, E
-
Zubarev, I
-
Bengtsson Gonzales, C
-
Forss, M
-
Nikouei, K
-
de Miguel, E
-
Elsilä, L
-
Linden, AM
-
Hjerling-Leffler, J
-
Augustine, GJ
-
Korpi, ER
Abstract:
The cellular architecture of the ventral tegmental area (VTA), the main hub of the brain reward system, remains only partially characterized. To extend the characterization to inhibitory neurons, we have identified three distinct subtypes of somatostatin (Sst)-expressing neurons in the mouse VTA. These neurons differ in their electrophysiological and morphological properties, anatomical localization, as well as mRNA expression profiles. Importantly, similar to cortical Sst-containing interneurons, most VTA Sst neurons express GABAergic inhibitory markers, but some of them also express glutamatergic excitatory markers and a subpopulation even express dopaminergic markers. Furthermore, only some of the proposed marker genes for cortical Sst neurons were expressed in the VTA Sst neurons. Physiologically, one of the VTA Sst neuron subtypes locally inhibited neighboring dopamine neurons. Overall, our results demonstrate the remarkable complexity and heterogeneity of VTA Sst neurons and suggest that these cells are multifunctional players in the midbrain reward circuitry.
145.
Novel culture system via wirelessly controllable optical stimulation of the FGF signaling pathway for human and pig pluripotency.
-
Choi, IY
-
Lim, H
-
Huynh, A
-
Schofield, J
-
Cho, HJ
-
Lee, H
-
Andersen, P
-
Shin, JH
-
Heo, WD
-
Hyun, SH
-
Kim, YJ
-
Oh, Y
-
Kim, H
-
Lee, G
Abstract:
Stem cell fate is largely determined by cellular signaling networks and is heavily dependent on the supplementation of exogenous recombinant proteins into culture media; however, uneven distribution and inconsistent stability of recombinant proteins are closely associated with the spontaneous differentiation of pluripotent stem cells (PSCs) and result in significant costs in large-scale manufacturing. Here, we report a novel PSC culture system via wirelessly controllable optical activation of the fibroblast growth factor (FGF) signaling pathway without the need for supplementation of recombinant FGF2 protein, a key molecule for maintaining pluripotency of PSCs. Using a fusion protein between the cytoplasmic region of the FGF receptor-1 and a light-oxygen-voltage domain, we achieved tunable, blue light-dependent activation of FGF signaling in human and porcine PSCs. Our data demonstrate that a highly controllable optical stimulation of the FGF signaling pathway is sufficient for long-term maintenance of PSCs, without the loss of differentiation potential into three germ layers. This culture system will be a cost-effective platform for a large-scale stem cell culture.
146.
Optogenetic Rescue of a Patterning Mutant.
Abstract:
Animal embryos are patterned by a handful of highly conserved inductive signals. Yet, in most cases, it is unknown which pattern features (i.e., spatial gradients or temporal dynamics) are required to support normal development. An ideal experiment to address this question would be to "paint" arbitrary synthetic signaling patterns on "blank canvas" embryos to dissect their requirements. Here, we demonstrate exactly this capability by combining optogenetic control of Ras/extracellular signal-related kinase (ERK) signaling with the genetic loss of the receptor tyrosine-kinase-driven terminal signaling patterning in early Drosophila embryos. Blue-light illumination at the embryonic termini for 90 min was sufficient to rescue normal development, generating viable larvae and fertile adults from an otherwise lethal terminal signaling mutant. Optogenetic rescue was possible even using a simple, all-or-none light input that reduced the gradient of Erk activity and eliminated spatiotemporal differences in terminal gap gene expression. Systematically varying illumination parameters further revealed that at least three distinct developmental programs are triggered at different signaling thresholds and that the morphogenetic movements of gastrulation are robust to a 3-fold variation in the posterior pattern width. These results open the door to controlling tissue organization with simple optical stimuli, providing new tools to probe natural developmental processes, create synthetic tissues with defined organization, or directly correct the patterning errors that underlie developmental defects.
147.
Early But Not Delayed Optogenetic RAF Activation Promotes Astrocytogenesis in Mouse Neural Progenitors.
Abstract:
The RAS/RAF/MEK/ERK pathway promotes gliogenesis but the kinetic role of RAF1, a key RAF kinase, in the induction of astrocytogenesis remains to be elucidated. To address this challenge, we determine the temporal functional outcome of RAF1 during mouse neural progenitor cell differentiation using an optogenetic RAF1 system (OptoRAF1). OptoRAF1 allows for reversible activation of the RAF/MEK/ERK pathway via plasma membrane recruitment of RAF1 based on blue light-sensitive protein dimerizer CRY2/CIB1. We found that early light-induced OptoRAF1 activation in neural progenitor cells promotes cell proliferation and increased expression of glial markers and glia-enriched genes. However, delayed OptoRAF1 activation in differentiated neural progenitor had little effect on glia marker expression, suggesting that RAF1 is required to promote astrocytogenesis only within a short time window. In addition, activation of OptoRAF1 did not have a significant effect on neurogenesis, but was able to promote neuronal neurite growth.
148.
Dual Function of PI(4,5)P2 in Insulin-Regulated Exocytic Trafficking of GLUT4 in Adipocytes.
-
Li, H
-
Shentu, P
-
Xiao, M
-
Zhao, X
-
Fan, J
-
Liu, X
-
Lin, Y
-
Wang, L
-
Li, H
-
Guo, X
-
Idevall-Hagren, O
-
Xu, Y
Abstract:
Phosphoinositides are important signaling molecules involved in the regulation of vesicular trafficking. It has been implicated that phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is involved in insulin-regulated GLUT4 translocation in adipocytes. However, it remains unclear where and how PI(4,5)P2 regulates discrete steps of GLUT4 vesicle translocation in adipocytes, especially on the exocytic arm of regulation. Here, we employed optogenetic tools to acutely control the PI(4,5)P2 metabolism in living cells. By combination of TIRFM imaging, we were able to monitor the temporal-spatial-dependent PI(4,5)P2 regulation on discrete steps of GLUT4 translocation in adipocytes. We found that the plasma membrane localized PI(4,5)P2 is crucial for proper insulin signaling propagation and for insulin-stimulated GLUT4 vesicle translocation in 3T3-L1 adipocytes. Global depletion of PI(4,5)P2 on the cell surface blunted insulin-stimulated Akt phosphorylation and abolished insulin effects in promotion of the docking and fusion of GLUT4 vesicle with the plasma membrane. Furthermore, by development of a novel optogenetic module to selectively modulate PI(4,5)P2 levels on the GLUT4 vesicle docking site, we identified an important regulatory role of PI(4,5)P2 in controlling of vesicle docking process. Local depletion of PI(4,5)P2 at the vesicle docking site promoted GLUT4 vesicle undocking, diminished insulin-stimulated GLUT4 vesicle docking and fusion, but without perturbation of insulin signaling propagation in adipocytes. Our results provide strong evidence that cell surface PI(4,5)P2 plays two distinct functions on regulation of the exocytic trafficking of GLUT4 in adipocytes. PI(4,5)P2 not only regulates the proper activation of insulin signaling in general but also controls GLUT4 vesicle docking process at the vesicle-membrane contact sites.
149.
Nanobody-directed targeting of optogenetic tools to study signaling in the primary cilium.
-
Hansen, JN
-
Kaiser, F
-
Klausen, C
-
Stüven, B
-
Chong, R
-
Bönigk, W
-
Mick, DU
-
Möglich, A
-
Jurisch-Yaksi, N
-
Schmidt, FI
-
Wachten, D
Abstract:
Compartmentalization of cellular signaling forms the molecular basis of cellular behavior. The primary cilium constitutes a subcellular compartment that orchestrates signal transduction independent from the cell body. Ciliary dysfunction causes severe diseases, termed ciliopathies. Analyzing ciliary signaling has been challenging due to the lack of tools investigate ciliary signaling. Here, we describe a nanobody-based targeting approach for optogenetic tools in mammalian cells and in vivo in zebrafish to specifically analyze ciliary signaling and function. Thereby, we overcome the loss of protein function observed after fusion to ciliary targeting sequences. We functionally localized modifiers of cAMP signaling, the photo-activated adenylate cyclase bPAC and the light-activated phosphodiesterase LAPD, and the cAMP biosensor mlCNBD-FRET to the cilium. Using this approach, we studied the contribution of spatial cAMP signaling in controlling cilia length. Combining optogenetics with nanobody-based targeting will pave the way to the molecular understanding of ciliary function in health and disease.
150.
Engineered Illumination Devices for Optogenetic Control of Cellular Signaling Dynamics.
Abstract:
Spatially and temporally varying patterns of morphogen signals during development drive cell fate specification at the proper location and time. However, current in vitro methods typically do not allow for precise, dynamic spatiotemporal control of morphogen signaling and are thus insufficient to readily study how morphogen dynamics affect cell behavior. Here, we show that optogenetic Wnt/β-catenin pathway activation can be controlled at user-defined intensities, temporal sequences, and spatial patterns using engineered illumination devices for optogenetic photostimulation and light activation at variable amplitudes (LAVA). By patterning human embryonic stem cell (hESC) cultures with varying light intensities, LAVA devices enabled dose-responsive control of optoWnt activation and Brachyury expression. Furthermore, time-varying and spatially localized patterns of light revealed tissue patterning that models the embryonic presentation of Wnt signals in vitro. LAVA devices thus provide a low-cost, user-friendly method for high-throughput and spatiotemporal optogenetic control of cell signaling for applications in developmental and cell biology.