Showing 1476 - 1500 of 1626 results
1476.
How to control proteins with light in living systems.
Abstract:
The possibility offered by photocontrolling the activity of biomolecules in vivo while recording physiological parameters is opening up new opportunities for the study of physiological processes at the single-cell level in a living organism. For the last decade, such tools have been mainly used in neuroscience, and their application in freely moving animals has revolutionized this field. New photochemical approaches enable the control of various cellular processes by manipulating a wide range of protein functions in a noninvasive way and with unprecedented spatiotemporal resolution. We are at a pivotal moment where biologists can adapt these cutting-edge technologies to their system of study. This user-oriented review presents the state of the art and highlights technical issues to be resolved in the near future for wide and easy use of these powerful approaches.
1477.
Manipulation of endogenous kinase activity in living cells using photoswitchable inhibitory peptides.
Abstract:
Optogenetic control of endogenous signaling can be an important tool for probing cell behavior. Using the photoresponse of the LOV2 domain of Avena sativa phototropin 1, we developed analogues of kinase inhibitors whose activity is light dependent. Inhibitory peptides were appended to the Jα helix, where they potently inhibited kinases in the light but were sterically blocked from kinase interaction in the dark. Photoactivatable inhibitors for cyclic-AMP dependent kinase (PKA) and myosin light chain kinase (MLCK) are described, together with studies that shed light on proper positioning of the peptides in the LOV domain. These inhibitors altered endogenous signaling in living cells and produced light-dependent changes in cell morphodynamics.
1478.
Subcellular optogenetic inhibition of G proteins generates signaling gradients and cell migration.
Abstract:
Cells sense gradients of extracellular cues and generate polarized responses such as cell migration and neurite initiation. There is static information on the intracellular signaling molecules involved in these responses, but how they dynamically orchestrate polarized cell behaviors is not well understood. A limitation has been the lack of methods to exert spatial and temporal control over specific signaling molecules inside a living cell. Here we introduce optogenetic tools that act downstream of native G protein-coupled receptor (GPCRs) and provide direct control over the activity of endogenous heterotrimeric G protein subunits. Light-triggered recruitment of a truncated regulator of G protein signaling (RGS) protein or a Gβγ-sequestering domain to a selected region on the plasma membrane results in localized inhibition of G protein signaling. In immune cells exposed to spatially uniform chemoattractants, these optogenetic tools allow us to create reversible gradients of signaling activity. Migratory responses generated by this approach show that a gradient of active G protein αi and βγ subunits is sufficient to generate directed cell migration. They also provide the most direct evidence so for a global inhibition pathway triggered by Gi signaling in directional sensing and adaptation. These optogenetic tools can be applied to interrogate the mechanistic basis of other GPCR-modulated cellular functions.
1479.
Light-inducible receptor tyrosine kinases that regulate neurotrophin signalling.
-
Chang, KY
-
Woo, D
-
Jung, H
-
Lee, S
-
Kim, S
-
Won, J
-
Kyung, T
-
Park, H
-
Kim, N
-
Yang, HW
-
Park, JY
-
Hwang, EM
-
Kim, D
-
Heo, WD
Abstract:
Receptor tyrosine kinases (RTKs) are a family of cell-surface receptors that have a key role in regulating critical cellular processes. Here, to understand and precisely control RTK signalling, we report the development of a genetically encoded, photoactivatable Trk (tropomyosin-related kinase) family of RTKs using a light-responsive module based on Arabidopsis thaliana cryptochrome 2. Blue-light stimulation (488 nm) of mammalian cells harbouring these receptors robustly upregulates canonical Trk signalling. A single light stimulus triggers transient signalling activation, which is reversibly tuned by repetitive delivery of blue-light pulses. In addition, the light-provoked process is induced in a spatially restricted and cell-specific manner. A prolonged patterned illumination causes sustained activation of extracellular signal-regulated kinase and promotes neurite outgrowth in a neuronal cell line, and induces filopodia formation in rat hippocampal neurons. These light-controllable receptors are expected to create experimental opportunities to spatiotemporally manipulate many biological processes both in vitro and in vivo.
1480.
Light-mediated control of gene expression in filamentous fungus Trichoderma reesei.
Abstract:
We developed a light-mediated system based on synthetic light-switchable transactivators. The transactivators bind promoter upon blue-light exposure and rapidly initiate transcription of target transgenes in filamentous fungus Trichoderma reesei. Light is inexpensive to apply, easily delivered, and instantly removed, and thus has significant advantages over chemical inducers.
1481.
Rac1-dependent lamellipodial motility in prostate cancer PC-3 cells revealed by optogenetic control of Rac1 activity.
Abstract:
The lamellipodium, an essential structure for cell migration, plays an important role in the invasion and metastasis of cancer cells. Although Rac1 recognized as a key player in the formation of lamellipodia, the molecular mechanisms underlying lamellipodial motility are not fully understood. Optogenetic technology enabled us to spatiotemporally control the activity of photoactivatable Rac1 (PA-Rac1) in living cells. Using this system, we revealed the role of phosphatidylinositol 3-kinase (PI3K) in Rac1-dependent lamellipodial motility in PC-3 prostate cancer cells. Through local blue laser irradiation of PA-Rac1-expressing cells, lamellipodial motility was reversibly induced. First, outward extension of a lamellipodium parallel to the substratum was observed. The extended lamellipodium then showed ruffling activity at the periphery. Notably, PI(3,4,5)P3 and WAVE2 were localized in the extending lamellipodium in a PI3K-dependent manner. We confirmed that the inhibition of PI3K activity greatly suppressed lamellipodial extension, while the ruffling activity was less affected. These results suggest that Rac1-induced lamellipodial motility consists of two distinct activities, PI3K-dependent outward extension and PI3K-independent ruffling.
1482.
Optical control of protein function through unnatural amino acid mutagenesis and other optogenetic approaches.
Abstract:
Biological processes are naturally regulated with high spatial and temporal resolution at the molecular, cellular, and systems level. To control and study processes with the same resolution, light-sensitive groups and domains have been employed to optically activate and deactivate protein function. Optical control is a noninvasive technique in which the amplitude, wavelength, spatial location, and timing of the light illumination can be easily controlled. This review focuses on applications of genetically encoded unnatural amino acids containing light-removable protecting groups to optically trigger protein function, while also discussing select optogenetic approaches using natural light-sensitive domains to engineer optical control of biological processes.
1483.
Live imaging in Drosophila: The optical and genetic toolkits.
Abstract:
Biological imaging based on light microscopy comes at the core of the methods that let us understanding morphology and its dynamics in synergy to the spatiotemporal distribution of cellular and molecular activities as the organism develops and becomes functional. Non-linear optical tools and superesolution methodologies are under constant development and their applications to live imaging of whole organisms keep improving as we speak. Genetically coded biosensors, multicolor clonal methods and optogenetics in different organisms and, in particular, in Drosophila follow equivalent paths. We anticipate a brilliant future for live imaging providing the roots for the holistic understanding, rather than for individual parts, of development and function at the whole-organism level.
1484.
Reversible protein inactivation by optogenetic trapping in cells.
Abstract:
We present a versatile platform to inactivate proteins in living cells using light, light-activated reversible inhibition by assembled trap (LARIAT), which sequesters target proteins into complexes formed by multimeric proteins and a blue light-mediated heterodimerization module. Using LARIAT, we inhibited diverse proteins that modulate cytoskeleton, lipid signaling and cell cycle with high spatiotemporal resolution. Use of single-domain antibodies extends the method to target proteins containing specific epitopes, including GFP.
1485.
Blue light-induced dimerization of monomeric aureochrome-1 enhances its affinity for the target sequence.
Abstract:
Aureochrome-1 (AUREO1) is a blue light (BL) receptor that mediates the branching response in stramenopile alga, Vaucheria frigida. AUREO1 contains a basic leucine zipper (bZIP) domain in the central region and a light-oxygen-voltage sensing (LOV) domain at the C terminus, and has been suggested to function as a light-regulated transcription factor. We have previously reported that preparations of recombinant AUREO1 contained the complete coding sequence (full-length, FL) and N-terminal truncated protein (ZL) containing bZIP and LOV domains, and suggested that wild-type ZL (ZLwt2) was in a dimer form with intermolecular disulfide linkages at Cys(162) and Cys(182) (Hisatomi, O., Takeuchi, K., Zikihara, K., Ookubo, Y., Nakatani, Y., Takahashi, F., Tokutomi, S., and Kataoka, H. (2013) Plant Cell Physiol. 54, 93-106). In the present study, we report the photoreactions, oligomeric structures, and DNA binding of monomeric cysteine to serine-mutated ZL (ZLC2S), DTT-treated ZL (DTT-ZL), and FL (DTT-FL). Recombinant AUREO1 showed similar spectral properties and dark regeneration kinetics to those of dimeric ZLwt2. Dynamic light scattering and size exclusion chromatography revealed that ZLC2S and DTT-ZL were monomeric in the dark state. Dissociation of intermolecular disulfide bonds of ZLwt2 was in equilibrium with a midpoint oxidation-redox potential of approximately -245 ± 15 mV. BL induced the dimerization of monomeric ZL, which subsequently increased its affinity for the target sequence. Also, DTT-FL was monomeric in the dark state and underwent BL-induced dimerization, which led to formation of the FL2·DNA complex. Taken together, our results suggest that monomeric AUREO1 is present in vivo, with dimerization playing a key role in its role as a BL-regulated transcription factor.
1486.
Quantitative real-time kinetics of optogenetic proteins CRY2 and CIB1/N using single-molecule tools.
Abstract:
In this work we evaluate the interaction of two optogenetic protein variants (CIB1, CIBN) with their complementary protein CRY2 by single-molecule tools in cell-free extracts. After validating the blue light induced co-localization of CRY2 and CIB1/N by Förster resonance energy transfer (FRET) in live cells, a fluorescence correlation spectroscopy (FCS) based method was developed to quantitatively determine the in vitro association of the extracted proteins. Our experiments suggest that CIB1, in comparison with CIBN, possesses a better coupling efficiency with CRY2 due to its intact protein structure and lower diffusion rate within 300s detection window.
1487.
Photo-dynamics of BLUF domain containing adenylyl cyclase NgPAC3 from the amoeboflagellate Naegleria gruberi NEG-M strain.
Abstract:
The absorption and emission spectroscopic behavior of the photo-activated adenylyl cyclase NgPAC3 from the amoeboflagellate Naegleria gruberi NEG-M strain was studied. The flavin cofactor was found to be partly fully oxidized and partly fully reduced. The typical BLUF domain (BLUF = Blue Light sensor Using Flavin) oxidized flavin absorption photo-cycle dynamics with about 14 nm flavin absorption red-shift in the signaling state was observed. The quantum efficiency of signaling state formation was determined to be s = 0.66 ± 0.03. A bi-exponential signaling state recovery to the dark-adapted receptor state was observed with the time constants rec,f = 275 s and rec,sl = 45 min. The thermal irreversible protein unfolding was studied and an apparent protein melting temperature of ϑm ≈ 50 ◦C was found. The photodynamic behavior of NgPAC3 is compared with the behavior of the previously investigated photo-activated cyclases NgPAC1 (nPAC) and NgPAC2 from the same N. gruberi NEG-M strain. Purified recombinant NgPAC3 showed light-gated adenylate cyclase activity upon illumination with blue light. Its cyclase activity is compared with those of NgPAC1 and NgPAC2.
1488.
Bidirectional regulation of mRNA translation in mammalian cells by using PUF domains.
Abstract:
The regulation of gene expression is crucial in diverse areas of biological science, engineering, and medicine. A genetically encoded system based on the RNA binding domain of the Pumilio and FBF (PUF) proteins was developed for the bidirectional regulation (i.e., either upregulation or downregulation) of the translation of a target mRNA. PUF domains serve as designable scaffolds for the recognition of specific RNA elements and the specificity can be easily altered to target any 8-nucleotide RNA sequence. The expression of a reporter could be varied by over 17-fold when using PUF-based activators and repressors. The specificity of the method was established by using wild-type and mutant PUF domains. Furthermore, this method could be used to activate the translation of target mRNA downstream of PUF binding sites in a light-dependent manner. Such specific bidirectional control of mRNA translation could be particularly useful in the fields of synthetic biology, developmental biology, and metabolic engineering.
1489.
Light-mediated kinetic control reveals the temporal effect of the Raf/MEK/ERK pathway in PC12 cell neurite outgrowth.
Abstract:
It has been proposed that differential activation kinetics allows cells to use a common set of signaling pathways to specify distinct cellular outcomes. For example, nerve growth factor (NGF) and epidermal growth factor (EGF) induce different activation kinetics of the Raf/MEK/ERK signaling pathway and result in differentiation and proliferation, respectively. However, a direct and quantitative linkage between the temporal profile of Raf/MEK/ERK activation and the cellular outputs has not been established due to a lack of means to precisely perturb its signaling kinetics. Here, we construct a light-gated protein-protein interaction system to regulate the activation pattern of the Raf/MEK/ERK signaling pathway. Light-induced activation of the Raf/MEK/ERK cascade leads to significant neurite outgrowth in rat PC12 pheochromocytoma cell lines in the absence of growth factors. Compared with NGF stimulation, light stimulation induces longer but fewer neurites. Intermittent on/off illumination reveals that cells achieve maximum neurite outgrowth if the off-time duration per cycle is shorter than 45 min. Overall, light-mediated kinetic control enables precise dissection of the temporal dimension within the intracellular signal transduction network.
1490.
Optical control of the Ca2+ concentration in a live specimen with a genetically encoded Ca2+-releasing molecular tool.
Abstract:
Calcium ion (Ca2+) is an important second messenger implicated in the control of many different cellular processes in living organisms. Ca2+ is typically studied by direct visualization using chemically or genetically encoded indicators. A complementary, and perhaps more useful, approach involves direct manipulation of Ca2+ concentration; tools for this exist but are rather poorly developed compared to the indicators at least. Here, we report a photoactivatable Ca2+-releasing protein, photoactivatable Ca2+ releaser (PACR), made by the insertion of a photosensitive protein domain (LOV2) into a Ca2+ binding protein (calmodulin fused with the M13 peptide). As the PACR is genetically encoded, and unlike conventional optical control tools (e.g., channel rhodopsin) not membrane bound, we are able to restrict expression within the cell, to allow subcellular perturbation of Ca2+ levels. In whole animals, we are able to control the behavior of Caenorhabditis elegans with light by expressing the PACR only in the touch neuron.
1491.
Light-inducible gene regulation with engineered zinc finger proteins.
Abstract:
The coupling of light-inducible protein-protein interactions with gene regulation systems has enabled the control of gene expression with light. In particular, heterodimer protein pairs from plants can be used to engineer a gene regulation system in mammalian cells that is reversible, repeatable, tunable, controllable in a spatiotemporal manner, and targetable to any DNA sequence. This system, Light-Inducible Transcription using Engineered Zinc finger proteins (LITEZ), is based on the blue light-induced interaction of GIGANTEA and the LOV domain of FKF1 that drives the localization of a transcriptional activator to the DNA-binding site of a highly customizable engineered zinc finger protein. This chapter provides methods for modifying LITEZ to target new DNA sequences, engineering a programmable LED array to illuminate cell cultures, and using the modified LITEZ system to achieve spatiotemporal control of transgene expression in mammalian cells.
1492.
Biophysical, mutational, and functional investigation of the chromophore-binding pocket of light-oxygen-voltage photoreceptors.
Abstract:
As light-regulated actuators, sensory photoreceptors underpin optogenetics and numerous applications in synthetic biology. Protein engineering has been applied to fine-tune the properties of photoreceptors and to generate novel actuators. For the blue-light-sensitive light-oxygen-voltage (LOV) photoreceptors, mutations near the flavin chromophore modulate response kinetics and the effective light responsiveness. To probe for potential, inadvertent effects on receptor activity, we introduced these mutations into the engineered LOV photoreceptor YF1 and determined their impact on light regulation. While several mutations severely impaired the dynamic range of the receptor (e.g., I39V, R63K, and N94A), residue substitutions in a second group were benign with little effect on regulation (e.g., V28T, N37C, and L82I). Electron paramagnetic resonance and absorption spectroscopy identified correlated effects for certain of the latter mutations on chromophore environment and response kinetics in YF1 and the LOV2 domain from Avena sativa phototropin 1. Carefully chosen mutations provide a powerful means to adjust the light-response function of photoreceptors as demanded for diverse applications.
1493.
Optogenetic control of ROS production.
Abstract:
Reactive Oxygen Species (ROS) are known to cause oxidative damage to DNA, proteins and lipids. In addition, recent evidence suggests that ROS can also initiate signaling cascades that respond to stress and modify specific redox-sensitive moieties as a regulatory mechanism. This suggests that ROS are physiologically-relevant signaling molecules. However, these sensor/effector molecules are not uniformly distributed throughout the cell. Moreover, localized ROS damage may elicit site-specific compensatory measures. Thus, the impact of ROS can be likened to that of calcium, a ubiquitous second messenger, leading to the prediction that their effects are exquisitely dependent upon their location, quantity and even the timing of generation. Despite this prediction, ROS signaling is most commonly intuited through the global administration of chemicals that produce ROS or by ROS quenching through global application of antioxidants. Optogenetics, which uses light to control the activity of genetically-encoded effector proteins, provides a means of circumventing this limitation. Photo-inducible genetically-encoded ROS-generating proteins (RGPs) were originally employed for their phototoxic effects and cell ablation. However, reducing irradiance and/or fluence can achieve sub-lethal levels of ROS that may mediate subtle signaling effects. Hence, transgenic expression of RGPs as fusions to native proteins gives researchers a new tool to exert spatial and temporal control over ROS production. This review will focus on the new frontier defined by the experimental use of RGPs to study ROS signaling.
1494.
Real-time optogenetic control of intracellular protein concentration in microbial cell cultures.
Abstract:
Perturbations in the concentration of a specific protein are often used to study and control biological networks. The ability to "dial-in" and programmatically control the concentration of a desired protein in cultures of cells would be transformative for applications in research and biotechnology. We developed a culturing apparatus and feedback control scheme which, in combination with an optogenetic system, allows us to generate defined perturbations in the intracellular concentration of a specific protein in microbial cell culture. As light can be easily added and removed, we can control protein concentration in culture more dynamically than would be possible with long-lived chemical inducers. Control of protein concentration is achieved by sampling individual cells from the culture apparatus, imaging and quantifying protein concentration, and adjusting the inducing light appropriately. The culturing apparatus can be operated as a chemostat, allowing us to precisely control microbial growth and providing cell material for downstream assays. We illustrate the potential for this technology by generating fixed and time-varying concentrations of a specific protein in continuous steady-state cultures of the model organism Saccharomyces cerevisiae. We anticipate that this technology will allow for quantitative studies of biological networks as well as external tuning of synthetic gene circuits and bioprocesses.
1495.
Factors that control the chemistry of the LOV domain photocycle.
Abstract:
Algae, plants, bacteria and fungi contain Light-Oxygen-Voltage (LOV) domains that function as blue light sensors to control cellular responses to light. All LOV domains contain a bound flavin chromophore that is reduced upon photon absorption and forms a reversible, metastable covalent bond with a nearby cysteine residue. In Avena sativa LOV2 (AsLOV2), the photocycle is accompanied by an allosteric conformational change that activates the attached phototropin kinase in the full-length protein. Both the conformational change and formation of the cysteinyl-flavin adduct are stabilized by the reduction of the N5 atom in the flavin's isoalloxazine ring. In this study, we perform a mutational analysis to investigate the requirements for LOV2 to photocycle. We mutated all the residues that interact with the chromophore isoalloxazine ring to inert functional groups but none could fully inhibit the photocycle except those to the active-site cysteine. However, electronegative side chains in the vicinity of the chromophore accelerate the N5 deprotonation and the return to the dark state. Mutations to the N414 and Q513 residues identify a potential water gate and H₂O coordination sites. These residues affect the electronic nature of the chromophore and photocycle time by helping catalyze the N5 reduction leading to the completion of the photocycle. In addition, we demonstrate that dehydration leads to drastically slower photocycle times. Finally, to investigate the requirements of an active-site cysteine for photocycling, we moved the nearby cysteine to alternative locations and found that some variants can still photocycle. We propose a new model of the LOV domain photocycle that involves all of these components.
1496.
Genetically engineered photoinducible homodimerization system with improved dimer-forming efficiency.
Abstract:
Vivid (VVD) is a photoreceptor derived from Neurospora Crassa that rapidly forms a homodimer in response to blue light. Although VVD has several advantages over other photoreceptors as photoinducible homodimerization system, VVD has a critical limitation in its low dimer-forming efficiency. To overcome this limitation of wild-type VVD, here we conduct site-directed saturation mutagenesis in the homodimer interface of VVD. We have found that the Ile52Cys mutation of VVD (VVD-52C) substantially improves its homodimer-forming efficiency up to 180%. We have demonstrated the utility of VVD-52C for making a light-inducible gene expression system more robust. In addition, using VVD-52C, we have developed photoactivatable caspase-9, which enables optical control of apoptosis of mammalian cells. The present genetically engineered photoinducible homodimerization system can provide a powerful tool to optically control a broad range of molecular processes in the cell.
1497.
An optogenetic gene expression system with rapid activation and deactivation kinetics.
Abstract:
Optogenetic gene expression systems can control transcription with spatial and temporal detail unequaled with traditional inducible promoter systems. However, current eukaryotic light-gated transcription systems are limited by toxicity, dynamic range or slow activation and deactivation. Here we present an optogenetic gene expression system that addresses these shortcomings and demonstrate its broad utility. Our approach uses an engineered version of EL222, a bacterial light-oxygen-voltage protein that binds DNA when illuminated with blue light. The system has a large (>100-fold) dynamic range of protein expression, rapid activation (<10 s) and deactivation kinetics (<50 s) and a highly linear response to light. With this system, we achieve light-gated transcription in several mammalian cell lines and intact zebrafish embryos with minimal basal gene activation and toxicity. Our approach provides a powerful new tool for optogenetic control of gene expression in space and time.
1498.
A fully genetically encoded protein architecture for optical control of peptide ligand concentration.
Abstract:
Ion channels are among the most important proteins in biology, regulating the activity of excitable cells and changing in diseases. Ideally it would be possible to actuate endogenous ion channels, in a temporally precise and reversible manner, and without requiring chemical cofactors. Here we present a modular protein architecture for fully genetically encoded, light-modulated control of ligands that modulate ion channels of a targeted cell. Our reagent, which we call a lumitoxin, combines a photoswitch and an ion channel-blocking peptide toxin. Illumination causes the photoswitch to unfold, lowering the toxin's local concentration near the cell surface, and enabling the ion channel to function. We explore lumitoxin modularity by showing operation with peptide toxins that target different voltage-dependent K(+) channels. The lumitoxin architecture may represent a new kind of modular protein-engineering strategy for designing light-activated proteins, and thus may enable development of novel tools for modulating cellular physiology.
1499.
Fluorescence imaging-based high-throughput screening of fast- and slow-cycling LOV proteins.
Abstract:
Light-oxygen-voltage (LOV) domains function as blue light-inducible molecular switches. The photosensory LOV domains derived from plants and fungi have provided an indispensable tool for optogenetics. Here we develop a high-throughput screening system to efficiently improve switch-off kinetics of LOV domains. The present system is based on fluorescence imaging of thermal reversion of a flavin cofactor bound to LOV domains. We conducted multi site-directed random mutagenesis of seven amino acid residues surrounding the flavin cofactor of the second LOV domain derived from Avena sativa phototropin 1 (AsLOV2). The gene library was introduced into Escherichia coli cells. Then thermal reversion of AsLOV2 variants, respectively expressed in different bacterial colonies on agar plate, was imaged with a stereoscopic fluorescence microscope. Based on the mutagenesis and imaging-based screening, we isolated 12 different variants showing substantially faster thermal reversion kinetics than wild-type AsLOV2. Among them, AsLOV2-V416T exhibited thermal reversion with a time constant of 2.6 s, 21-fold faster than wild-type AsLOV2. With a slight modification of the present approach, we also have efficiently isolated 8 different decelerated variants, represented by AsLOV2-V416L that exhibited thermal reversion with a time constant of 4.3 × 10(3) s (78-fold slower than wild-type AsLOV2). The present approach based on fluorescence imaging of the thermal reversion of the flavin cofactor is generally applicable to a variety of blue light-inducible molecular switches and may provide a new opportunity for the development of molecular tools for emerging optogenetics.
1500.
Optogenetic brain interfaces.
Abstract:
The brain is a large network of interconnected neurons where each cell functions as a nonlinear processing element. Unraveling the mysteries of information processing in the complex networks of the brain requires versatile neurostimulation and imaging techniques. Optogenetics is a new stimulation method which allows the activity of neurons to be modulated by light. For this purpose, the cell-types of interest are genetically targeted to produce light-sensitive proteins. Once these proteins are expressed, neural activity can be controlled by exposing the cells to light of appropriate wavelengths. Optogenetics provides a unique combination of features, including multimodal control over neural function and genetic targeting of specific cell-types. Together, these versatile features combine to a powerful experimental approach, suitable for the study of the circuitry of psychiatric and neurological disorders. The advent of optogenetics was followed by extensive research aimed to produce new lines of light-sensitive proteins and to develop new technologies: for example, to control the distribution of light inside the brain tissue or to combine optogenetics with other modalities including electrophysiology, electrocorticography, nonlinear microscopy, and functional magnetic resonance imaging. In this paper, the authors review some of the recent advances in the field of optogenetics and related technologies and provide their vision for the future of the field.