Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1876 - 1900 of 1903 results
1876.

Light-activated DNA binding in a designed allosteric protein.

blue AsLOV2 in vitro
Proc Natl Acad Sci USA, 30 Jul 2008 DOI: 10.1073/pnas.0709610105 Link to full text
Abstract: An understanding of how allostery, the conformational coupling of distant functional sites, arises in highly evolvable systems is of considerable interest in areas ranging from cell biology to protein design and signaling networks. We reasoned that the rigidity and defined geometry of an alpha-helical domain linker would make it effective as a conduit for allosteric signals. To test this idea, we rationally designed 12 fusions between the naturally photoactive LOV2 domain from Avena sativa phototropin 1 and the Escherichia coli trp repressor. When illuminated, one of the fusions selectively binds operator DNA and protects it from nuclease digestion. The ready success of our rational design strategy suggests that the helical "allosteric lever arm" is a general scheme for coupling the function of two proteins.
1877.

Cyanobacteriochrome CcaS is the green light receptor that induces the expression of phycobilisome linker protein.

green Phytochromes Background
Proc Natl Acad Sci USA, 9 Jul 2008 DOI: 10.1073/pnas.0801826105 Link to full text
Abstract: Cyanobacteriochromes are a newly recognized group of photoreceptors that are distinct relatives of phytochromes but are found only in cyanobacteria. A putative cyanobacteriochrome, CcaS, is known to chromatically regulate the expression of the phycobilisome linker gene (cpcG2) in Synechocystis sp. PCC 6803. In this study, we isolated the chromophore-binding domain of CcaS from Synechocystis as well as from phycocyanobilin-producing Escherichia coli. Both preparations showed the same reversible photoconversion between a green-absorbing form (Pg, lambda(max) = 535 nm) and a red-absorbing form (Pr, lambda(max) = 672 nm). Mass spectrometry and denaturation analyses suggested that Pg and Pr bind phycocyanobilin in a double-bond configuration of C15-Z and C15-E, respectively. Autophosphorylation activity of the histidine kinase domain in nearly full-length CcaS was up-regulated by preirradiation with green light. Similarly, phosphotransfer to the cognate response regulator, CcaR, was higher in Pr than in Pg. From these results, we conclude that CcaS phosphorylates CcaR under green light and induces expression of cpcG2, leading to accumulation of CpcG2-phycobilisome as a chromatic acclimation system. CcaS is the first recognized green light receptor in the expanded phytochrome superfamily, which includes phytochromes and cyanobacteriochromes.
1878.

Estimation of the available free energy in a LOV2-J alpha photoswitch.

blue LOV domains Background
Nat Chem Biol, 6 Jul 2008 DOI: 10.1038/nchembio.99 Link to full text
Abstract: Protein photosensors are versatile tools for studying ligand-regulated allostery and signaling. Fundamental to these processes is the amount of energy that can be provided by a photosensor to control downstream signaling events. Such regulation is exemplified by the phototropins--plant serine/threonine kinases that are activated by blue light via conserved LOV (light, oxygen and voltage) domains. The core photosensor of oat phototropin 1 is a LOV domain that interacts in a light-dependent fashion with an adjacent alpha-helix (J alpha) to control kinase activity. We used solution NMR measurements to quantify the free energy of the LOV domain-J alpha-helix binding equilibrium in the dark and lit states. These data indicate that light shifts this equilibrium by approximately 3.8 kcal mol(-1), thus quantifying the energy available through LOV-J alpha for light-driven allosteric regulation. This study provides insight into the energetics of light sensing by phototropins and benchmark values for engineering photoswitchable systems based on the LOV-J alpha interaction.
1879.

Light activation of the LOV protein vivid generates a rapidly exchanging dimer.

blue LOV domains Background
Biochemistry, 14 Jun 2008 DOI: 10.1021/bi8007017 Link to full text
Abstract: The fungal photoreceptor Vivid (VVD) plays an important role in the adaptation of blue-light responses in Neurospora crassa. VVD, an FAD-binding LOV (light, oxygen, voltage) protein, couples light-induced cysteinyl adduct formation at the flavin ring to conformational changes in the N-terminal cap (Ncap) of the VVD PAS domain. Size-exclusion chromatography (SEC), equilibrium ultracentrifugation, and static and dynamic light scattering show that these conformational changes generate a rapidly exchanging VVD dimer, with an expanded hydrodynamic radius. A three-residue N-terminal beta-turn that assumes two different conformations in a crystal structure of a VVD C71V variant is essential for light-state dimerization. Residue substitutions at a critical hinge between the Ncap and PAS core can inhibit or enhance dimerization, whereas a Tyr to Trp substitution at the Ncap-PAS interface stabilizes the light-state dimer. Cross-linking through engineered disulfides indicates that the light-state dimer differs considerably from the dark-state dimer found in VVD crystal structures. These results verify the role of Ncap conformational changes in gating the photic response of N. crassa and indicate that LOV-LOV homo- or heterodimerization may be a mechanism for regulating light-activated gene expression.
1880.

Photoregulation in prokaryotes.

blue near-infrared red Fluorescent proteins LOV domains Phytochromes Review Background
Curr Opin Microbiol, 8 Apr 2008 DOI: 10.1016/j.mib.2008.02.014 Link to full text
Abstract: The spectroscopic identification of sensory rhodopsin I by Bogomolni and Spudich in 1982 provided a molecular link between the light environment and phototaxis in Halobacterium salinarum, and thus laid the foundation for the study of signal transducing photosensors in prokaryotes. In recent years, a number of new prokaryotic photosensory receptors have been discovered across a broad range of taxa, including dozens in chemotrophic species. Among these photoreceptors are new classes of rhodopsins, BLUF-domain proteins, bacteriophytochromes, cryptochromes, and LOV-family photosensors. Genetic and biochemical analyses of these receptors have demonstrated that they can regulate processes ranging from photosynthetic pigment biosynthesis to virulence.
1881.

Activation of protein splicing with light in yeast.

red PhyB/PIF3 S. cerevisiae
Nat Methods, 13 Feb 2008 DOI: 10.1038/nmeth.1189 Link to full text
Abstract: Spatiotemporal regulation of protein function is a key feature of living systems; experimental tools that provide such control are of great utility. Here we report a genetically encoded system for controlling a post-translational process, protein splicing, with light. Studies in Saccharomyces cerevisiae demonstrate that fusion of a photodimerization system from Arabidopsis thaliana to an artificially split intein permits rapid activation of protein splicing to yield a new protein product.
1882.

N- and C-terminal flanking regions modulate light-induced signal transduction in the LOV2 domain of the blue light sensor phototropin 1 from Avena sativa.

blue LOV domains Background
Biochemistry, 15 Nov 2007 DOI: 10.1021/bi701543e Link to full text
Abstract: Light sensing by photoreceptors controls phototropism, chloroplast movement, stomatal opening, and leaf expansion in plants. Understanding the molecular mechanism by which these processes are regulated requires a quantitative description of photoreceptor dynamics. We focus on a light-driven signal transduction mechanism in the LOV2 domain (LOV, light, oxygen, voltage) of the blue light photoreceptor phototropin 1 from Avena sativa (oat). High-resolution crystal structures of the dark and light states of an oat LOV2 construct including residues Leu404 through Leu546 (LOV2 (404-546)) have been determined at 105 and 293 K. In all four structures, LOV2 (404-546) exhibits the typical Per-ARNT-Sim (PAS) fold, flanked by an additional conserved N-terminal turn-helix-turn motif and a C-terminal flanking region containing an amphipathic Jalpha helix. These regions dock on the LOV2 core domain and bury several hydrophobic residues of the central beta-sheet of the core domain that would otherwise be exposed to solvent. Light structures of LOV2 (404-546) reveal that formation of the covalent bond between Cys450 and the C4a atom of the flavin mononucleotide (FMN) results in local rearrangement of the hydrogen-bonding network in the FMN binding pocket. These rearrangements are associated with disruption of the Asn414-Asp515 hydrogen bond on the surface of the protein and displacement of the N- and C-terminal flanking regions of LOV2 (404-546), both of which constitute a structural signal.
1883.

Dual role for a bacteriophytochrome in the bioenergetic control of Rhodopseudomonas palustris: enhancement of photosystem synthesis and limitation of respiration.

near-infrared Phytochromes Background
Biochim Biophys Acta, 26 Sep 2007 DOI: 10.1016/j.bbabio.2007.09.003 Link to full text
Abstract: In the purple photosynthetic bacterium Rhodopseudomonas palustris, far-red illumination induces photosystem synthesis via the action of the bacteriophytochrome RpBphP1. This bacteriophytochrome antagonizes the repressive effect of the transcriptional regulator PpsR2 under aerobic condition. We show here that, in addition to photosystem synthesis, far-red light induces a significant growth rate limitation, compared to cells grown in the dark, linked to a decrease in the respiratory activity. The phenotypes of mutants inactivated in RpBphP1 and PpsR2 show their involvement in this regulation. Based on enzymatic and transcriptional studies, a 30% decrease in the expression of the alpha-ketoglutarate dehydrogenase complex, a central enzyme of the Krebs cycle, is observed under far-red light. We propose that this decrease is responsible for the down-regulation of respiration in this condition. This regulation mechanism at the Krebs cycle level still allows the formation of the photosynthetic apparatus via the synthesis of key biosynthesis precursors but lowers the production of NADH, i.e. the respiratory activity. Overall, the dual action of RpBphP1 on the regulation of both the photosynthesis genes and the Krebs cycle allows a fine adaptation of bacteria to environmental conditions by enhancement of the most favorable bioenergetic process in the light, photosynthesis versus respiration.
1884.

Structural basis for light-dependent signaling in the dimeric LOV domain of the photosensor YtvA.

blue LOV domains Background
J Mol Biol, 2 Aug 2007 DOI: 10.1016/j.jmb.2007.07.039 Link to full text
Abstract: The photosensor YtvA binds flavin mononucleotide and regulates the general stress reaction in Bacillus subtilis in response to blue light illumination. It belongs to the family of light-oxygen-voltage (LOV) proteins that were first described in plant phototropins and form a subgroup of the Per-Arnt-Sim (PAS) superfamily. Here, we report the three-dimensional structure of the LOV domain of YtvA in its dark and light states. The protein assumes the global fold common to all PAS domains and dimerizes via a hydrophobic interface. Directly C-terminal to the core of the LOV domain, an alpha-helix extends into the solvent. Light absorption causes formation of a covalent bond between a conserved cysteine residue and atom C(4a) of the FMN ring, which triggers rearrangements throughout the LOV domain. Concomitantly, in the dark and light structures, the two subunits of the dimeric protein rotate relative to each other by 5 degrees . This small quaternary structural change is presumably a component of the mechanism by which the activity of YtvA is regulated in response to light. In terms of both structure and signaling mechanism, YtvA differs from plant phototropins and more closely resembles prokaryotic heme-binding PAS domains.
1885.

Steric interactions stabilize the signaling state of the LOV2 domain of phototropin 1.

blue LOV domains Background
Biochemistry, 21 Jul 2007 DOI: 10.1021/bi700852w Link to full text
Abstract: Phototropins (phot1 and phot2) are blue light receptor kinases that control a range of photoresponses that serve to optimize the photosynthetic efficiency of plants. Light sensing by the phototropins is mediated by a repeated motif at the N-terminal region of the protein known as the LOV domain. Bacterially expressed LOV domains bind flavin mononucleotide noncovalently and are photochemically active in solution. Irradiation of the LOV domain results in the formation of a flavin-cysteinyl adduct (LOV390) which thermally relaxes back to the ground state in the dark, effectively completing a photocycle that serves as a molecular switch to control receptor kinase activity. We have employed a random mutagenesis approach to identify further amino acid residues involved in LOV-domain photochemistry. Escherichia coli colonies expressing a mutagenized population of LOV2 derived from Avena sativa (oat) phot1 were screened for variants that showed altered photochemical reactivity in response to blue light excitation. One variant showed slower rates of LOV390 formation but exhibited adduct decay times 1 order of magnitude faster than wild type. A single Ile --> Val substitution was responsible for the effects observed, which removes a single methyl group found in van der Waals contact with the cysteine sulfur involved in adduct formation. A kinetic acceleration trend was observed for adduct decay by decreasing the size of the isoleucine side chain. Our findings therefore indicate that the steric nature of this amino acid side chain contributes to stabilization of the C-S cysteinyl adduct.
1886.

Functional transplant of photoactivated adenylyl cyclase (PAC) into Aplysia sensory neurons.

blue euPAC A. kurodai neurons Immediate control of second messengers Neuronal activity control
Neurosci Res, 3 Jun 2007 DOI: 10.1016/j.neures.2007.05.015 Link to full text
Abstract: In neural mechanisms of animal learning, intracellular cAMP has been known to play an important role. In the present experiments we attempted functional transplant of a photoactivated adenylyl cyclase (PAC) isolated from Euglena into Aplysia neurons, and explored whether PAC can produce cAMP in the neurons by light stimulation. Serotonergic modulation of mechanoafferent sensory neurons in Aplysia pleural ganglia has been reported to increase intracellular cAMP level and promotes synaptic transmission to motor neurons by increasing spike width of sensory neurons. When cAMP was directly injected into the sensory neurons, spike amplitude temporarily decreased while spike width temporarily increased. This effect was not substituted by injection of 5'AMP, and maintained longer in a bath solution containing IBMX, the phosphodiesterase inhibitor. We, therefore, explored these changes as indicators of appearance of the PAC function. PAC or the PAC expression vector (pNEX-PAC) was injected into cell bodies of sensory neurons. Spike amplitude decreased in both cases and spike width increased in the PAC injection when the neurons were stimulated with light, suggesting that the transplanted PAC works well in Aplysia neurons. These results indicate that we can control cAMP production in specific neurons with light by the functional transplant of PAC.
1887.

Conformational switching in the fungal light sensor Vivid.

blue LOV domains Background
Science, 18 May 2007 DOI: 10.1126/science.1137128 Link to full text
Abstract: The Neurospora crassa photoreceptor Vivid tunes blue-light responses and modulates gating of the circadian clock. Crystal structures of dark-state and light-state Vivid reveal a light, oxygen, or voltage Per-Arnt-Sim domain with an unusual N-terminal cap region and a loop insertion that accommodates the flavin cofactor. Photoinduced formation of a cystein-flavin adduct drives flavin protonation to induce an N-terminal conformational change. A cysteine-to-serine substitution remote from the flavin adenine dinucleotide binding site decouples conformational switching from the flavin photocycle and prevents Vivid from sending signals in Neurospora. Key elements of this activation mechanism are conserved by other photosensors such as White Collar-1, ZEITLUPE, ENVOY, and flavin-binding, kelch repeat, F-BOX 1 (FKF1).
1888.

A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome.

blue Cryptochromes Background
J Biol Chem, 12 Feb 2007 DOI: 10.1074/jbc.m608872200 Link to full text
Abstract: Cryptochromes are flavoproteins that are evolutionary related to the DNA photolyases but lack DNA repair activity. Drosophila cryptochrome (dCRY) is a blue light photoreceptor that is involved in the synchronization of the circadian clock with the environmental light-dark cycle. Until now, spectroscopic and structural studies on this and other animal cryptochromes have largely been hampered by difficulties in their recombinant expression. We have therefore established an expression and purification scheme that enables us to purify mg amounts of monomeric dCRY from Sf21 insect cell cultures. Using UV-visible spectroscopy, mass spectrometry, and reversed phase high pressure liquid chromatography, we show that insect cell-purified dCRY contains flavin adenine dinucleotide in its oxidized state (FAD(ox)) and residual amounts of methenyltetrahydrofolate. Upon blue light irradiation, dCRY undergoes a reversible absorption change, which is assigned to the conversion of FAD(ox) to the red anionic FAD(.) radical. Our findings lead us to propose a novel photoreaction mechanism for dCRY, in which FAD(ox) corresponds to the ground state, whereas the FAD(.) radical represents the light-activated state that mediates resetting of the Drosophila circadian clock.
1889.

Structure and photoreaction of photoactive yellow protein, a structural prototype of the PAS domain superfamily.

blue Fluorescent proteins Background
Photochem Photobiol, 1 Jan 2007 DOI: 10.1562/2006-02-28-ir-827 Link to full text
Abstract: Photoactive yellow protein (PYP) is a water-soluble photosensor protein found in purple photosynthetic bacteria. Unlike bacterial rhodopsins, photosensor proteins composed of seven transmembrane helices and a retinal chromophore in halophilic archaebacteria, PYP is a highly soluble globular protein. The alpha/beta fold structure of PYP is a structural prototype of the PAS domain superfamily, many members of which function as sensors for various kinds of stimuli. To absorb a photon in the visible region, PYP has a p-coumaric acid chromophore binding to the cysteine residue via a thioester bond. It exists in a deprotonated trans form in the dark. The primary photochemical event is photo-isomerization of the chromophore from trans to cis form. The twisted cis chromophore in early intermediates is relaxed and finally protonated. Consequently, the chromophore becomes electrostatically neutral and rearrangement of the hydrogen-bonding network triggers overall structural change of the protein moiety, in which local conformational change around the chromophore is propagated to the N-terminal region. Thus, it is an ideal model for protein conformational changes that result in functional change, responding to stimuli and expressing physiological activity. In this paper, recent progress in investigation of the photoresponse of PYP is reviewed.
1890.

Fast manipulation of cellular cAMP level by light in vivo.

blue euPAC D. melanogaster in vivo HEK293 Xenopus oocytes Immediate control of second messengers Neuronal activity control
Nat Methods, 26 Nov 2006 DOI: 10.1038/nmeth975 Link to full text
Abstract: The flagellate Euglena gracilis contains a photoactivated adenylyl cyclase (PAC), consisting of the flavoproteins PACalpha and PACbeta. Here we report functional expression of PACs in Xenopus laevis oocytes, HEK293 cells and in Drosophila melanogaster, where neuronal expression yields light-induced changes in behavior. The activity of PACs is strongly and reversibly enhanced by blue light, providing a powerful tool for light-induced manipulation of cAMP in animal cells.
1891.

An unorthodox bacteriophytochrome from Rhodobacter sphaeroides involved in turnover of the second messenger c-di-GMP.

red Phytochromes Background
J Biol Chem, 12 Sep 2006 DOI: 10.1074/jbc.m604819200 Link to full text
Abstract: Bacteriophytochromes are bacterial photoreceptors that sense red/far red light using the biliverdin chromophore. Most bacteriophytochromes work as photoactivated protein kinases. The Rhodobacter sphaeroides bacteriophytochrome BphG1 is unconventional in that it has GGDEF and EAL output domains, which are involved, respectively, in synthesis (diguanylate cyclase) and degradation (phosphodiesterase) of the bacterial second messenger c-di-GMP. The GGDEF-EAL proteins studied to date displayed either diguanylate cyclase or phosphodiesterase activity but not both. To elucidate the function of BphG1, the holoprotein was purified from an Escherichia coli overexpression system designed to produce biliverdin. The holoprotein contained covalently bound biliverdin and interconverted between the red (dark) and far red (light-activated) forms. BphG1 had c-di-GMP-specific phosphodiesterase activity. Unexpectedly for a photochromic protein, this activity was essentially light-independent. BphG1 expressed in E. coli was found to undergo partial cleavage into two species. The smaller species was identified as the EAL domain of BphG1. It possessed c-di-GMP phosphodiesterase activity. Surprisingly, the larger species lacking EAL possessed diguanylate cyclase activity, which was dependent on biliverdin and strongly activated by light. BphG1 therefore is the first phytochrome with a non-kinase photoactivated enzymatic activity. This shows that the photosensory modules of phytochromes can transmit light signals to various outputs. BphG1 is potentially the first "bifunctional" enzyme capable of both c-di-GMP synthesis and hydrolysis. A model for the regulation of the "opposite" activities of BphG1 is presented.
1892.

Blue light activates the sigmaB-dependent stress response of Bacillus subtilis via YtvA.

blue LOV domains Background
J Bacteriol, Sep 2006 DOI: 10.1128/jb.00716-06 Link to full text
Abstract: Here we present evidence for a physiologically relevant light response mediated by the LOV domain-containing protein YtvA in the soil bacterium Bacillus subtilis. The loss and overproduction of YtvA abolish and enhance, respectively, the increase in sigma(B)-controlled ctc promoter activity at moderate light intensities. These effects were absent in the dark and in red light but present under blue-light illumination. Thus, activation of the general stress response in B. subtilis is modulated by blue light.
1893.

Synthetic biology: engineering Escherichia coli to see light.

red Cph1 E. coli
Nature, 24 Nov 2005 DOI: 10.1038/nature04405 Link to full text
Abstract: We have designed a bacterial system that is switched between different states by red light. The system consists of a synthetic sensor kinase that allows a lawn of bacteria to function as a biological film, such that the projection of a pattern of light on to the bacteria produces a high-definition (about 100 megapixels per square inch), two-dimensional chemical image. This spatial control of bacterial gene expression could be used to 'print' complex biological materials, for example, and to investigate signalling pathways through precise spatial and temporal control of their phosphorylation steps.
1894.

Kinetic analysis of the activation of photoactivated adenylyl cyclase (PAC), a blue-light receptor for photomovements of Euglena.

blue BLUF domains Background
Photochem Photobiol Sci, 15 Mar 2005 DOI: 10.1039/b417212d Link to full text
Abstract: Photoactivated adenylyl cyclase (PAC) was first purified from a photosensing organelle (the paraflagellar body) of the unicellular flagellate Euglena gracilis, and is regarded as the photoreceptor for the step-up photophobic response. Here, we report the kinetic properties of photoactivation of PAC and a change in intracellular cAMP levels upon blue light irradiation. Activation of PAC was dependent both on photon fluence rate and duration of irradiation, between which reciprocity held well in the range of 2--50 micromol m(-2) s(-1)(total fluence of 1200 micromol m(-2)). Intermittent irradiation also caused activation of PAC in a photon fluence-dependent manner irrespective of cycle periods. Wavelength dependency of PAC activation showed prominent peaks in the UV-B/C, UV-A and blue regions of the spectrum. The time course of the changes in intracellular cAMP levels corresponded well with that of the step-up photophobic response. From this and the kinetic properties of PAC photoactivation, we concluded that an increase in intracellular cAMP levels evoked by photoactivation of PAC is a key event of the step-up photophobic response.
1895.

Disruption of the LOV-Jalpha helix interaction activates phototropin kinase activity.

blue LOV domains Background
Biochemistry, 28 Dec 2004 DOI: 10.1021/bi048092i Link to full text
Abstract: Light plays a crucial role in activating phototropins, a class of plant photoreceptors that are sensitive to blue and UV-A wavelengths. Previous studies indicated that phototropin uses a bound flavin mononucleotide (FMN) within its light-oxygen-voltage (LOV) domain to generate a protein-flavin covalent bond under illumination. In the C-terminal LOV2 domain of Avena sativa phototropin 1, formation of this bond triggers a conformational change that results in unfolding of a helix external to this domain called Jalpha [Harper, S. M., et al. (2003) Science 301, 1541-1545]. Though the structural effects of illumination were characterized, it was unknown how these changes are coupled to kinase activation. To examine this, we made a series of point mutations along the Jalpha helix to disrupt its interaction with the LOV domain in a manner analogous to light activation. Using NMR spectroscopy and limited proteolysis, we demonstrate that several of these mutations displace the Jalpha helix from the LOV domain independently of illumination. When placed into the full-length phototropin protein, these point mutations display constitutive kinase activation, without illumination of the sample. These results indicate that unfolding of the Jalpha helix is the critical event in regulation of kinase signaling for the phototropin proteins.
1896.

VIVID is a flavoprotein and serves as a fungal blue light photoreceptor for photoadaptation.

blue LOV domains Background
EMBO J, 15 Sep 2003 DOI: 10.1093/emboj/cdg451 Link to full text
Abstract: Blue light regulates many physiological and developmental processes in fungi. Most of the blue light responses in the ascomycete Neurospora crassa are dependent on the two blue light regulatory proteins White Collar (WC)-1 and -2. WC-1 has recently been shown to be the first fungal blue light photoreceptor. In the present study, we characterize the Neurospora protein VIVID. VIVID shows a partial sequence similarity with plant blue light photoreceptors. In addition, we found that VIVID non-covalently binds a flavin chromophore. Upon illumination with blue light, VIVID undergoes a photocycle indicative of the formation of a flavin-cysteinyl adduct. VVD is localized in the cytoplasm and is only present after light induction. A loss-of-function vvd mutant was insensitive to increases in light intensities. Furthermore, mutational analysis of the photoactive cysteine indicated that the formation of a flavin-cysteinyl adduct is essential for VIVID functions in vivo. Our results show that VIVID is a second fungal blue light photoreceptor which enables Neurospora to perceive and respond to daily changes in light intensity.
1897.

Structural basis of a phototropin light switch.

blue LOV domains Background
Science, 12 Sep 2003 DOI: 10.1126/science.1086810 Link to full text
Abstract: Phototropins are light-activated kinases important for plant responses to blue light. Light initiates signaling in these proteins by generating a covalent protein-flavin mononucleotide (FMN) adduct within sensory Per-ARNT-Sim (PAS) domains. We characterized the light-dependent changes of a phototropin PAS domain by solution nuclear magnetic resonance spectroscopy and found that an alpha helix located outside the canonical domain plays a key role in this activation process. Although this helix associates with the PAS core in the dark, photoinduced changes in the domain structure disrupt this interaction. We propose that this mechanism couples light-dependent bond formation to kinase activation and identifies a signaling pathway conserved among PAS domains.
1898.

The LOV domain family: photoresponsive signaling modules coupled to diverse output domains.

blue Fluorescent proteins LOV domains Review Background
Biochemistry, 14 Jan 2003 DOI: 10.1021/bi026978l Link to full text
Abstract: For single-cell and multicellular systems to survive, they must accurately sense and respond to their cellular and extracellular environment. Light is a nearly ubiquitous environmental factor, and many species have evolved the capability to respond to this extracellular stimulus. Numerous photoreceptors underlie the activation of light-sensitive signal transduction cascades controlling these responses. Here, we review the properties of the light, oxygen, or voltage (LOV) family of blue-light photoreceptor domains, a subset of the Per-ARNT-Sim (PAS) superfamily. These flavin-binding domains, first identified in the higher-plant phototropins, are now shown to be present in plants, fungi, and bacteria. Notably, LOV domains are coupled to a wide array of other domains, including kinases, phosphodiesterases, F-box domains, STAS domains, and zinc fingers, which suggests that the absorption of blue light by LOV domains regulates the activity of these structurally and functionally diverse domains. LOV domains contain a conserved molecular volume extending from the flavin cofactor, which is the locus for light-driven structural change, to the molecular surface. We discuss the role of this conserved volume of structure in LOV-regulated processes.
1899.

BLUF: a novel FAD-binding domain involved in sensory transduction in microorganisms.

blue red BLUF domains Fluorescent proteins LOV domains Phytochromes Background
Trends Biochem Sci, 1 Oct 2002 DOI: 10.1016/s0968-0004(02)02181-3 Link to full text
Abstract: A novel FAD-binding domain, BLUF, exemplified by the N-terminus of the AppA protein from Rhodobacter sphaeroides, is present in various proteins, primarily from Bacteria. The BLUF domain is involved in sensing blue-light (and possibly redox) using FAD and is similar to the flavin-binding PAS domains and cryptochromes. The predicted secondary structure reveals that the BLUF domain is a novel FAD-binding fold.
1900.

A light-switchable gene promoter system.

red PhyB/PIF3 S. cerevisiae
Nat Biotechnol, 3 Sep 2002 DOI: 10.1038/nbt734 Link to full text
Abstract: Regulatable transgene systems providing easily controlled, conditional induction or repression of expression are indispensable tools in biomedical and agricultural research and biotechnology. Several such systems have been developed for eukaryotes. Most of these rely on the administration of either exogenous chemicals or heat shock. Despite the general success of many of these systems, the potential for problems, such as toxic, unintended, or pleiotropic effects of the inducing chemical or treatment, can impose limitations on their use. We have developed a promoter system that can be induced, rapidly and reversibly, by short pulses of light. This system is based on the known red light-induced binding of the plant photoreceptor phytochrome to the protein PIF3 and the reversal of this binding by far-red light. We show here that yeast cells expressing two chimeric proteins, a phytochrome-GAL4-DNA-binding-domain fusion and a PIF3-GAL4-activation-domain fusion, are induced by red light to express selectable or "scorable" marker genes containing promoters with a GAL4 DNA-binding site, and that this induction is rapidly abrogated by subsequent far-red light. We further show that the extent of induction can be controlled precisely by titration of the number of photons delivered to the cells by the light pulse. Thus, this system has the potential to provide rapid, noninvasive, switchable control of the expression of a desired gene to a preselected level in any suitable cell by simple exposure to a light signal.
Submit a new publication to our database