Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 25 of 181 results

Light-mediated control of Gene expression in mammalian cells.

blue near-infrared red Cryptochromes LOV domains Phytochromes Review
Neurosci Res, 7 Jan 2020 DOI: 10.1016/j.neures.2019.12.018 Link to full text
Abstract: Taking advantage of the recent development of genetically-defined photo-activatable actuator molecules, cellular functions, including gene expression, can be controlled by exposure to light. Such optogenetic strategies enable precise temporal and spatial manipulation of targeted single cells or groups of cells at a level hitherto impossible. In this review, we introduce light-controllable gene expression systems exploiting blue or red/far-red wavelengths and discuss their inherent properties potentially affecting induced downstream gene expression patterns. We also discuss recent advances in optical devices that will extend the application of optical gene expression control technologies into many different areas of biology and medicine.

Strategies for Engineering and Rewiring Kinase Regulation.

blue cyan red Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Trends Biochem Sci, 19 Dec 2019 DOI: 10.1016/j.tibs.2019.11.005 Link to full text
Abstract: Eukaryotic protein kinases (EPKs) catalyze the transfer of a phosphate group onto another protein in response to appropriate regulatory cues. In doing so, they provide a primary means for cellular information transfer. Consequently, EPKs play crucial roles in cell differentiation and cell-cycle progression, and kinase dysregulation is associated with numerous disease phenotypes including cancer. Nonnative cues for synthetically regulating kinases are thus much sought after, both for dissecting cell signaling pathways and for pharmaceutical development. In recent years advances in protein engineering and sequence analysis have led to new approaches for manipulating kinase activity, localization, and in some instances specificity. These tools have revealed fundamental principles of intracellular signaling and suggest paths forward for the design of therapeutic allosteric kinase regulators.

Elucidating cyclic AMP signaling in subcellular domains with optogenetic tools and fluorescent biosensors.

blue green red violet BLUF domains Cryptochromes Cyanobacteriochromes LOV domains Opsins Phytochromes Review
Biochem Soc Trans, 14 Nov 2019 DOI: 10.1042/bst20190246 Link to full text
Abstract: The second messenger 3',5'-cyclic nucleoside adenosine monophosphate (cAMP) plays a key role in signal transduction across prokaryotes and eukaryotes. Cyclic AMP signaling is compartmentalized into microdomains to fulfil specific functions. To define the function of cAMP within these microdomains, signaling needs to be analyzed with spatio-temporal precision. To this end, optogenetic approaches and genetically encoded fluorescent biosensors are particularly well suited. Synthesis and hydrolysis of cAMP can be directly manipulated by photoactivated adenylyl cyclases (PACs) and light-regulated phosphodiesterases (PDEs), respectively. In addition, many biosensors have been designed to spatially and temporarily resolve cAMP dynamics in the cell. This review provides an overview about optogenetic tools and biosensors to shed light on the subcellular organization of cAMP signaling.

Designing protein structures and complexes with the molecular modeling program Rosetta.

blue LOV domains Review
J Biol Chem, 7 Nov 2019 DOI: 10.1074/jbc.aw119.008144 Link to full text
Abstract: Proteins perform an amazingly diverse set of functions in all aspects of life. Critical to the function of many proteins are the highly specific three-dimensional structures they adopt. For this reason, there is strong interest in learning how to rationally design proteins that adopt user-defined structures. Over the last 25-years there has been significant progress in the field of computational protein design as rotamer-based sequence optimization protocols have enabled accurate design of protein tertiary and quaternary structure. In this award article I will summarize how the molecular modeling program Rosetta is used to design new protein structures and describe how we have taken advantage of this capability to create proteins that have important applications in research and medicine.  I will highlight three protein design stories: the use of protein interface design to create therapeutic bispecific antibodies, the engineering of light-inducible proteins that can be used to recruit proteins to specific locations in the cell, and the de novo design of new protein structures from pieces of naturally occurring proteins.

Structural Basis of Design and Engineering for Advanced Plant Optogenetics.

blue green red UV BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Trends Plant Sci, 4 Nov 2019 DOI: 10.1016/j.tplants.2019.10.002 Link to full text
Abstract: In optogenetics, light-sensitive proteins are specifically expressed in target cells and light is used to precisely control the activity of these proteins at high spatiotemporal resolution. Optogenetics initially used naturally occurring photoreceptors to control neural circuits, but has expanded to include carefully designed and engineered photoreceptors. Several optogenetic constructs are based on plant photoreceptors, but their application to plant systems has been limited. Here, we present perspectives on the development of plant optogenetics, considering different levels of design complexity. We discuss how general principles of light-driven signal transduction can be coupled with approaches for engineering protein folding to develop novel optogenetic tools. Finally, we explore how the use of computation, networks, circular permutation, and directed evolution could enrich optogenetics.

Manipulating the Patterns of Mechanical Forces That Shape Multicellular Tissues.

blue Cryptochromes LOV domains Review
Physiology (Bethesda), 1 Nov 2019 DOI: 10.1152/physiol.00018.2019 Link to full text
Abstract: During embryonic development, spatial and temporal patterns of mechanical forces help to transform unstructured groups of cells into complex, functional tissue architectures. Here, we review emerging approaches to manipulate these patterns of forces to investigate the mechanical mechanisms that shape multicellular tissues, with a focus on recent experimental studies of epithelial tissue sheets in the embryo of the model organism Drosophila melanogaster.

Single-Molecule Analysis and Engineering of DNA Motors.

blue cyan near-infrared red UV Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Chem Rev, 29 Oct 2019 DOI: 10.1021/acs.chemrev.9b00361 Link to full text
Abstract: Molecular motors are diverse enzymes that transduce chemical energy into mechanical work and, in doing so, perform critical cellular functions such as DNA replication and transcription, DNA supercoiling, intracellular transport, and ATP synthesis. Single-molecule techniques have been extensively used to identify structural intermediates in the reaction cycles of molecular motors and to understand how substeps in energy consumption drive transitions between the intermediates. Here, we review a broad spectrum of single-molecule tools and techniques such as optical and magnetic tweezers, atomic force microscopy (AFM), single-molecule fluorescence resonance energy transfer (smFRET), nanopore tweezers, and hybrid techniques that increase the number of observables. These methods enable the manipulation of individual biomolecules via the application of forces and torques and the observation of dynamic conformational changes in single motor complexes. We also review how these techniques have been applied to study various motors such as helicases, DNA and RNA polymerases, topoisomerases, nucleosome remodelers, and motors involved in the condensation, segregation, and digestion of DNA. In-depth analysis of mechanochemical coupling in molecular motors has made the development of artificially engineered motors possible. We review techniques such as mutagenesis, chemical modifications, and optogenetics that have been used to re-engineer existing molecular motors to have, for instance, altered speed, processivity, or functionality. We also discuss how single-molecule analysis of engineered motors allows us to challenge our fundamental understanding of how molecular motors transduce energy.

Principles and applications of optogenetics in developmental biology.

blue red Cryptochromes LOV domains Phytochromes Review
Development, 22 Oct 2019 DOI: 10.1242/dev.175067 Link to full text
Abstract: The development of multicellular organisms is controlled by highly dynamic molecular and cellular processes organized in spatially restricted patterns. Recent advances in optogenetics are allowing protein function to be controlled with the precision of a pulse of laser light in vivo, providing a powerful new tool to perturb developmental processes at a wide range of spatiotemporal scales. In this Primer, we describe the most commonly used optogenetic tools, their application in developmental biology and in the nascent field of synthetic morphogenesis.

Optogenetics sheds new light on tissue engineering and regenerative medicine.

blue cyan green near-infrared red UV Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Biomaterials, 16 Oct 2019 DOI: 10.1016/j.biomaterials.2019.119546 Link to full text
Abstract: Optogenetics has demonstrated great potential in the fields of tissue engineering and regenerative medicine, from basic research to clinical applications. Spatiotemporal encoding during individual development has been widely identified and is considered a novel strategy for regeneration. A as a noninvasive method with high spatiotemporal resolution, optogenetics are suitable for this strategy. In this review, we discuss roles of dynamic signal coding in cell physiology and embryonic development. Several optogenetic systems are introduced as ideal optogenetic tools, and their features are compared. In addition, potential applications of optogenetics for tissue engineering are discussed, including light-controlled genetic engineering and regulation of signaling pathways. Furthermore, we present how emerging biomaterials and photoelectric technologies have greatly promoted the clinical application of optogenetics and inspired new concepts for optically controlled therapies. Our summation of currently available data conclusively demonstrates that optogenetic tools are a promising method for elucidating and simulating developmental processes, thus providing vast prospects for tissue engineering and regenerative medicine applications.

Emerging Species and Genome Editing Tools: Future Prospects in Cyanobacterial Synthetic Biology.

blue green near-infrared Cyanobacteriochromes LOV domains Phytochromes Review
Microorganisms, 29 Sep 2019 DOI: 10.3390/microorganisms7100409 Link to full text
Abstract: Recent advances in synthetic biology and an emerging algal biotechnology market have spurred a prolific increase in the availability of molecular tools for cyanobacterial research. Nevertheless, work to date has focused primarily on only a small subset of model species, which arguably limits fundamental discovery and applied research towards wider commercialisation. Here, we review the requirements for uptake of new strains, including several recently characterised fast-growing species and promising non-model species. Furthermore, we discuss the potential applications of new techniques available for transformation, genetic engineering and regulation, including an up-to-date appraisal of current Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated protein (CRISPR/Cas) and CRISPR interference (CRISPRi) research in cyanobacteria. We also provide an overview of several exciting molecular tools that could be ported to cyanobacteria for more advanced metabolic engineering approaches (e.g., genetic circuit design). Lastly, we introduce a forthcoming mutant library for the model species Synechocystis sp. PCC 6803 that promises to provide a further powerful resource for the cyanobacterial research community.

Synthetic biology approaches for targeted protein degradation.

blue LOV domains Review
Biotechnol Adv, 7 Sep 2019 DOI: 10.1016/j.biotechadv.2019.107446 Link to full text
Abstract: Protein degradation is an effective native mechanism used in modulating intracellular information, and thus it plays an essential role in maintaining cellular homeostasis. Repurposing native protein degradation in a synthetic context is gaining attention as a new strategy to manipulate cellular behavior rapidly for a wide range of applications including disease detection and therapy. This review examines the native mechanisms and machineries by which mammalian cells degrade their own proteins including the sequence of events from identifying a candidate for degradation to the protein's destruction. Next, it explores engineering efforts to degrade both exogenous and native proteins with high specificity and control by targeting proteins into the degradation cascade. A complete understanding of design rules with an ability to use cellular information as signals will allow control over the cellular behavior in a well-defined manner.

Versatile cell ablation tools and their applications to study loss of cell functions.

blue LOV domains Review
Cell Mol Life Sci, 29 Jul 2019 DOI: 10.1007/s00018-019-03243-w Link to full text
Abstract: Targeted cell ablation is a powerful approach for studying the role of specific cell populations in a variety of organotypic functions, including cell differentiation, and organ generation and regeneration. Emerging tools for permanently or conditionally ablating targeted cell populations and transiently inhibiting neuronal activities exhibit a diversity of application and utility. Each tool has distinct features, and none can be universally applied to study different cell types in various tissue compartments. Although these tools have been developed for over 30 years, they require additional improvement. Currently, there is no consensus on how to select the tools to answer the specific scientific questions of interest. Selecting the appropriate cell ablation technique to study the function of a targeted cell population is less straightforward than selecting the method to study a gene's functions. In this review, we discuss the features of the various tools for targeted cell ablation and provide recommendations for optimal application of specific approaches.

Light-induced dimerization approaches to control cellular processes.

blue cyan green near-infrared red UV Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Chemistry, 15 Jul 2019 DOI: 10.1002/chem.201900562 Link to full text
Abstract: Light-inducible approaches provide means to control biological systems with spatial and temporal resolution that is unmatched by traditional genetic perturbations. Recent developments of optogenetic and chemo-optogenetic systems for induced proximity in cells facilitate rapid and reversible manipulation of highly dynamic cellular processes and have become valuable tools in diverse biological applications. The new expansions of the toolbox facilitate control of signal transduction, genome editing, 'painting' patterns of active molecules onto cellular membranes and light-induced cell cycle control. A combination of light- and chemically induced dimerization approaches has also seen interesting progress. Here we provide an overview of the optogenetic systems and the emerging chemo-optogenetic systems, and discuss recent applications in tackling complex biological problems.

Regulation of signaling proteins in the brain by light.

blue red UV BLUF domains Cryptochromes LOV domains Phytochromes UV receptors Review
Prog Neurobiol, 11 Jun 2019 DOI: 10.1016/j.pneurobio.2019.101638 Link to full text
Abstract: In order to study the role of signaling proteins, such as kinases and GTPases, in brain functions it is necessary to control their activity at the appropriate spatiotemporal resolution and to examine the cellular and behavioral effects of such changes in activity. Reduced spatiotemporal resolution in the regulation of these proteins activity will impede the ability to understand the proteins normal functions as longer modification of their activity in non-normal locations could lead to effects different from their natural functions. To control intracellular signaling proteins at the highest temporal resolution recent innovative optogenetic approaches were developed to allow the control of photoactivable signaling proteins activity by light. These photoactivatable proteins can be activated in selected cell population in brain and in specific subcellular compartments. Minimal-invasive tools are being developed to photoactivate these proteins for study and therapy. Together these techniques afford an unprecedented spatiotemporal control of signaling proteins activity to unveil the function of brain proteins with high accuracy in behaving animals. As dysfunctional signaling proteins are involved in brain diseases, the optogenetic technique has also the potential to be used as a tool to treat brain diseases.

A molecular toolbox for interrogation of membrane contact sites.

blue LOV domains Review
J Physiol (Lond), 23 May 2019 DOI: 10.1113/jp277761 Link to full text
Abstract: Membrane contact sites (MCSs) are specialized subcellular compartments formed by closely apposed membranes from two organelles. The intermembrane gap is separated by a distance ranging from 10 to 35 nm. MCSs are typically maintained through dynamic protein-protein and protein-lipid interactions. These intermembrane contact sites constitute important intracellular signalling hotspots to mediate a plethora of cellular processes, including calcium homeostasis, lipid metabolism, membrane biogenesis and organelle remodelling. In recent years, a series of genetically encoded probes and chemogenetic or optogenetic actuators have been invented to aid the visualization and interrogation of MCSs in both fixed and living cells. These molecular tools have greatly accelerated the pace of mechanistic dissection of membrane contact sites at the molecular level. In this review, we present an overview on the latest progress in this endeavour, and provide a general guide to the selection of methods and molecular tools for probing interorganellar membrane contact sites.

Use of Exogenous and Endogenous Photomediators as Efficient ROS Modulation Tools: Results and Perspectives for Therapeutic Purposes.

blue LOV domains Review
Oxid Med Cell Longev, 31 Mar 2019 DOI: 10.1155/2019/2867516 Link to full text
Abstract: Reactive Oxygen Species (ROS) play an essential dual role in living systems. Healthy levels of ROS modulate several signaling pathways, but at the same time, when they exceed normal physiological amounts, they work in the opposite direction, playing pivotal functions in the pathophysiology of multiple severe medical conditions (i.e., cancer, diabetes, neurodegenerative and cardiovascular diseases, and aging). Therefore, the research for methods to detect their levels via light-sensitive fluorescent probes has been extensively studied over the years. However, this is not the only link between light and ROS. In fact, the modulation of ROS mediated by light has been exploited already for a long time. In this review, we report the state of the art, as well as recent developments, in the field of photostimulation of oxidative stress, from photobiomodulation (PBM) mediated by naturally expressed light-sensitive proteins to the most recent optogenetic approaches, and finally, we describe the main methods of exogenous stimulation, in particular highlighting the new insights based on optically driven ROS modulation mediated by polymeric materials.

Optically inducible membrane recruitment and signaling systems.

blue near-infrared Cryptochromes LOV domains Phytochromes Review
Curr Opin Struct Biol, 15 Mar 2019 DOI: 10.1016/ Link to full text
Abstract: Optical induction of intracellular signaling by membrane-associated and integral membrane proteins allows spatiotemporally precise control over second messenger signaling and cytoskeletal rearrangements that are important to cell migration, development, and proliferation. Optogenetic membrane recruitment of a protein-of-interest to control its signaling by altering subcellular localization is a versatile means to these ends. Here, we summarize the signaling characteristics and underlying structure-function of RGS-LOV photoreceptors as single-component membrane recruitment tools that rapidly, reversibly, and efficiently carry protein cargo from the cytoplasm to the plasma membrane by a light-regulated electrostatic interaction with the membrane itself. We place the technology-relevant features of these recently described natural photosensory proteins in context of summarized protein engineering and design strategies for optically controlling membrane protein signaling.

Bacteriophytochromes - from informative model systems of phytochrome function to powerful tools in cell biology.

blue near-infrared red LOV domains Phytochromes Review
Curr Opin Struct Biol, 14 Mar 2019 DOI: 10.1016/ Link to full text
Abstract: Bacteriophytochromes are a subfamily of the diverse light responsive phytochrome photoreceptors. Considering their preferential interaction with biliverdin IXα as endogenous cofactor, they have recently been used for creating optogenetic tools and engineering fluorescent probes. Ideal absorption characteristics for the activation of bacteriophytochrome-based systems in the therapeutic near-infrared window as well the availability of biliverdin in mammalian tissues have resulted in tremendous progress in re-engineering bacteriophytochromes for diverse applications. At the same time, both the structural analysis and the functional characterization of diverse naturally occurring bacteriophytochrome systems have unraveled remarkable differences in signaling mechanisms and have so far only touched the surface of the evolutionary diversity within the family of bacteriophytochromes. This review highlights recent findings and future challenges.

B12-based photoreceptors: from structure and function to applications in optogenetics and synthetic biology.

green Cobalamin-binding domains Review
Curr Opin Struct Biol, 6 Mar 2019 DOI: 10.1016/ Link to full text
Abstract: Vitamin B12-based photoreceptor proteins sense ultraviolet (UV), blue or green light using 5'-deoxyadenosylcobalamin (AdoCbl). The prototype of this widespread bacterial photoreceptor family, CarH, controls light-dependent gene expression in photoprotective cellular responses. It represses transcription in the dark by binding to operator DNA as an AdoCbl-bound tetramer, whose disruption by light relieves operator binding to allow transcription. Structures of the 'dark' (free and DNA-bound) and 'light' CarH states and studies on the unusual AdoCbl photochemistry have provided fundamental insights into these photoreceptors. We highlight these, the plasticity within a conserved mode of action among CarH homologs, their distribution, and their promising applications in optogenetics and synthetic biology.

Controlling protein conformation with light.

blue cyan Dronpa145KN Fluorescent proteins LOV domains Review
Curr Opin Struct Biol, 5 Mar 2019 DOI: 10.1016/ Link to full text
Abstract: Optogenetics, genetically encoded engineering of proteins to respond to light, has enabled precise control of the timing and localization of protein activity in live cells and for specific cell types in animals. Light-sensitive ion channels have become well established tools in neurobiology, and a host of new methods have recently enabled the control of other diverse protein structures as well. This review focuses on approaches to switch proteins between physiologically relevant, naturally occurring conformations using light, accomplished by incorporating light-responsive engineered domains that sterically and allosterically control the active site.

Biological signal generators: integrating synthetic biology tools and in silico control.

blue green red Cryptochromes Cyanobacteriochromes LOV domains Phytochromes Review
Curr Opin Syst Biol, 27 Feb 2019 DOI: 10.1016/j.coisb.2019.02.007 Link to full text
Abstract: Biological networks sense extracellular stimuli and generate appropriate outputs within the cell that determine cellular response. Biological signal generators are becoming an important tool for understanding how information is transmitted in these networks and controlling network behavior. Signal generators produce well-defined, dynamic, intracellular signals of important network components, such as kinase activity or the concentration of a specific transcription factor. Synthetic biology tools coupled with in silico control have enabled the construction of these sophisticated biological signal generators. Here we review recent advances in biological signal generator construction and their use in systems biology studies. Challenges for constructing signal generators for a wider range of biological networks and generalizing their use are discussed.

Photodimerization systems for regulating protein-protein interactions with light.

blue cyan near-infrared red UV Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Curr Opin Struct Biol, 25 Feb 2019 DOI: 10.1016/ Link to full text
Abstract: Optogenetic dimerizers are modular domains that can be utilized in a variety of versatile ways to modulate cellular biochemistry. Because of their modularity, many applications using these tools can be easily transferred to new targets without extensive engineering. While a number of photodimerizer systems are currently available, the field remains nascent, with new optimizations for existing systems and new approaches to regulating biological function continuing to be introduced at a steady pace.

Developmental Erk Signaling Illuminated.

blue LOV domains Review
Dev Cell, 11 Feb 2019 DOI: 10.1016/j.devcel.2019.01.022 Link to full text
Abstract: How a small number of signaling pathways can be re-used in distinct embryonic contexts to control different fates remains unclear. In this issue of Developmental Cell, Johnson and Toettcher (2019) use optogenetic approaches to explore how different dynamic ERK signaling states control specific developmental fates in the Drosophila embryo.

Cell-machine interfaces for characterizing gene regulatory network dynamics.

green red Cyanobacteriochromes Phytochromes Review
Curr Opin Syst Biol, 1 Feb 2019 DOI: 10.1016/j.coisb.2019.01.001 Link to full text
Abstract: Gene regulatory networks and the dynamic responses they produce offer a wealth of information about how biological systems process information about their environment. Recently, researchers interested in dissecting these networks have been outsourcing various parts of their experimental workflow to computers. Here we review how, using microfluidic or optogenetic tools coupled with fluorescence imaging, it is now possible to interface cells and computers. These platforms enable scientists to perform informative dynamic stimulations of genetic pathways and monitor their reaction. It is also possible to close the loop and regulate genes in real time, providing an unprecedented view of how signals propagate through the network. Finally, we outline new tools that can be used within the framework of cell-machine interfaces.

Optogenetic tools light up phase separation.

blue LOV domains Review
Nat Methods, 30 Jan 2019 DOI: 10.1038/s41592-019-0310-5 Link to full text
Abstract: Abstract not available.
Submit a new publication to our database