Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 25 of 160 results

Optically inducible membrane recruitment and signaling systems.

blue near-infrared Cryptochromes LOV domains Phytochromes Review
Curr Opin Struct Biol, 15 Mar 2019 DOI: 10.1016/ Link to full text
Abstract: Optical induction of intracellular signaling by membrane-associated and integral membrane proteins allows spatiotemporally precise control over second messenger signaling and cytoskeletal rearrangements that are important to cell migration, development, and proliferation. Optogenetic membrane recruitment of a protein-of-interest to control its signaling by altering subcellular localization is a versatile means to these ends. Here, we summarize the signaling characteristics and underlying structure-function of RGS-LOV photoreceptors as single-component membrane recruitment tools that rapidly, reversibly, and efficiently carry protein cargo from the cytoplasm to the plasma membrane by a light-regulated electrostatic interaction with the membrane itself. We place the technology-relevant features of these recently described natural photosensory proteins in context of summarized protein engineering and design strategies for optically controlling membrane protein signaling.

Bacteriophytochromes - from informative model systems of phytochrome function to powerful tools in cell biology.

blue near-infrared red LOV domains Phytochromes Review
Curr Opin Struct Biol, 14 Mar 2019 DOI: 10.1016/ Link to full text
Abstract: Bacteriophytochromes are a subfamily of the diverse light responsive phytochrome photoreceptors. Considering their preferential interaction with biliverdin IXα as endogenous cofactor, they have recently been used for creating optogenetic tools and engineering fluorescent probes. Ideal absorption characteristics for the activation of bacteriophytochrome-based systems in the therapeutic near-infrared window as well the availability of biliverdin in mammalian tissues have resulted in tremendous progress in re-engineering bacteriophytochromes for diverse applications. At the same time, both the structural analysis and the functional characterization of diverse naturally occurring bacteriophytochrome systems have unraveled remarkable differences in signaling mechanisms and have so far only touched the surface of the evolutionary diversity within the family of bacteriophytochromes. This review highlights recent findings and future challenges.

B12-based photoreceptors: from structure and function to applications in optogenetics and synthetic biology.

green Cobalamin-binding domains Review
Curr Opin Struct Biol, 6 Mar 2019 DOI: 10.1016/ Link to full text
Abstract: Vitamin B12-based photoreceptor proteins sense ultraviolet (UV), blue or green light using 5'-deoxyadenosylcobalamin (AdoCbl). The prototype of this widespread bacterial photoreceptor family, CarH, controls light-dependent gene expression in photoprotective cellular responses. It represses transcription in the dark by binding to operator DNA as an AdoCbl-bound tetramer, whose disruption by light relieves operator binding to allow transcription. Structures of the 'dark' (free and DNA-bound) and 'light' CarH states and studies on the unusual AdoCbl photochemistry have provided fundamental insights into these photoreceptors. We highlight these, the plasticity within a conserved mode of action among CarH homologs, their distribution, and their promising applications in optogenetics and synthetic biology.

Controlling protein conformation with light.

blue cyan Dronpa145KN Fluorescent proteins LOV domains Review
Curr Opin Struct Biol, 5 Mar 2019 DOI: 10.1016/ Link to full text
Abstract: Optogenetics, genetically encoded engineering of proteins to respond to light, has enabled precise control of the timing and localization of protein activity in live cells and for specific cell types in animals. Light-sensitive ion channels have become well established tools in neurobiology, and a host of new methods have recently enabled the control of other diverse protein structures as well. This review focuses on approaches to switch proteins between physiologically relevant, naturally occurring conformations using light, accomplished by incorporating light-responsive engineered domains that sterically and allosterically control the active site.

Photodimerization systems for regulating protein-protein interactions with light.

blue cyan near-infrared red UV Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Curr Opin Struct Biol, 25 Feb 2019 DOI: 10.1016/ Link to full text
Abstract: Optogenetic dimerizers are modular domains that can be utilized in a variety of versatile ways to modulate cellular biochemistry. Because of their modularity, many applications using these tools can be easily transferred to new targets without extensive engineering. While a number of photodimerizer systems are currently available, the field remains nascent, with new optimizations for existing systems and new approaches to regulating biological function continuing to be introduced at a steady pace.

Developmental Erk Signaling Illuminated.

blue LOV domains Review
Dev Cell, 11 Feb 2019 DOI: 10.1016/j.devcel.2019.01.022 Link to full text
Abstract: How a small number of signaling pathways can be re-used in distinct embryonic contexts to control different fates remains unclear. In this issue of Developmental Cell, Johnson and Toettcher (2019) use optogenetic approaches to explore how different dynamic ERK signaling states control specific developmental fates in the Drosophila embryo.

Optogenetic tools light up phase separation.

blue LOV domains Review
Nat Methods, 30 Jan 2019 DOI: 10.1038/s41592-019-0310-5 Link to full text
Abstract: Abstract not available.

Synthetic switches and regulatory circuits in plants.

blue green near-infrared red UV Cobalamin-binding domains Cryptochromes LOV domains Phytochromes UV receptors Review
Plant Physiol, 28 Jan 2019 DOI: 10.1104/pp.18.01362 Link to full text
Abstract: Synthetic biology is an established but ever-growing interdisciplinary field of research currently revolutionizing biomedicine studies and the biotech industry. The engineering of synthetic circuitry in bacterial, yeast, and animal systems prompted considerable advances for the understanding and manipulation of genetic and metabolic networks; however, their implementation in the plant field lags behind. Here, we review theoretical-experimental approaches to the engineering of synthetic chemical- and light-regulated (optogenetic) switches for the targeted interrogation and control of cellular processes, including existing applications in the plant field. We highlight the strategies for the modular assembly of genetic parts into synthetic circuits of different complexity, ranging from Boolean logic gates and oscillatory devices up to semi- and fully synthetic open- and closed-loop molecular and cellular circuits. Finally, we explore potential applications of these approaches for the engineering of novel functionalities in plants, including understanding complex signaling networks, improving crop productivity, and the production of biopharmaceuticals.

Perspective Tools for Optogenetics and Photopharmacology: From Design to Implementation.

blue green red UV Cryptochromes LOV domains Opsins Phytochromes UV receptors Review
Prog Photon Sci, 24 Jan 2019 DOI: 10.1007/978-3-030-05974-3_8 Link to full text
Abstract: Optogenetics and photopharmacology are two perspective modern methodologies for control and monitoring of biological processes from an isolated cell to complex cell assemblies and organisms. Both methodologies use optically active components that being introduced into the cells of interest allow for optical control or monitoring of different cellular processes. In optogenetics, genetic materials are introduced into the cells to express light-sensitive proteins or protein constructs. In photopharmacology, photochromic compounds are delivered into a cell directly but not produced inside the cell from a genetic material. The development of both optogenetics and photopharmacology is inseparable from the design of improved tools (protein constructs or organic molecules) optimized for specific applications. Herein, we review the main tools that are used in modern optogenetics and photopharmaclogy and describe the types of cellular processes that can be controlled by these tools. Although a large number of different kinds of optogenetic tools exist, their performance can be evaluated with a limited number of metrics that have to be optimized for specific applications.We classify thesemetrics and describe the ways of their improvement.

Using Synthetic Biology to Engineer Spatial Patterns.

blue green red Cryptochromes Cyanobacteriochromes LOV domains Phytochromes Review
Adv Biosyst, 17 Dec 2018 DOI: 10.1002/adbi.201800280 Link to full text
Abstract: Synthetic biology has emerged as a multidisciplinary field that provides new tools and approaches to address longstanding problems in biology. It integrates knowledge from biology, engineering, mathematics, and biophysics to build—rather than to simply observe and perturb—biological systems that emulate natural counterparts or display novel properties. The interface between synthetic and developmental biology has greatly benefitted both fields and allowed to address questions that would remain challenging with classical approaches due to the intrinsic complexity and essentiality of developmental processes. This Progress Report provides an overview of how synthetic biology can help to understand a process that is crucial for the development of multicellular organisms: pattern formation. It reviews the major mechanisms of genetically encoded synthetic systems that have been engineered to establish spatial patterns at the population level. Limitations, challenges, applications, and potential opportunities of synthetic pattern formation are also discussed.

Perspectives of RAS and RHEB GTPase Signaling Pathways in Regenerating Brain Neurons.

blue cyan red Cryptochromes FKF1/G1 Fluorescent proteins LOV domains Phytochromes Review
Int J Mol Sci, 14 Dec 2018 DOI: 10.3390/ijms19124052 Link to full text
Abstract: Cellular activation of RAS GTPases into the GTP-binding "ON" state is a key switch for regulating brain functions. Molecular protein structural elements of rat sarcoma (RAS) and RAS homolog protein enriched in brain (RHEB) GTPases involved in this switch are discussed including their subcellular membrane localization for triggering specific signaling pathways resulting in regulation of synaptic connectivity, axonal growth, differentiation, migration, cytoskeletal dynamics, neural protection, and apoptosis. A beneficial role of neuronal H-RAS activity is suggested from cellular and animal models of neurodegenerative diseases. Recent experiments on optogenetic regulation offer insights into the spatiotemporal aspects controlling RAS/mitogen activated protein kinase (MAPK) or phosphoinositide-3 kinase (PI3K) pathways. As optogenetic manipulation of cellular signaling in deep brain regions critically requires penetration of light through large distances of absorbing tissue, we discuss magnetic guidance of re-growing axons as a complementary approach. In Parkinson's disease, dopaminergic neuronal cell bodies degenerate in the substantia nigra. Current human trials of stem cell-derived dopaminergic neurons must take into account the inability of neuronal axons navigating over a large distance from the grafted site into striatal target regions. Grafting dopaminergic precursor neurons directly into the degenerating substantia nigra is discussed as a novel concept aiming to guide axonal growth by activating GTPase signaling through protein-functionalized intracellular magnetic nanoparticles responding to external magnets.

A bright future: optogenetics to dissect the spatiotemporal control of cell behavior.

blue cyan BLUF domains Cryptochromes Fluorescent proteins LOV domains Review
Curr Opin Chem Biol, 4 Dec 2018 DOI: 10.1016/j.cbpa.2018.11.010 Link to full text
Abstract: Cells sense, process, and respond to extracellular information using signaling networks: collections of proteins that act as precise biochemical sensors. These protein networks are characterized by both complex temporal organization, such as pulses of signaling activity, and by complex spatial organization, where proteins assemble structures at particular locations and times within the cell. Yet despite their ubiquity, studying these spatial and temporal properties has remained challenging because they emerge from the entire protein network rather than a single node, and cannot be easily tuned by drugs or mutations. These challenges are being met by a new generation of optogenetic tools capable of directly controlling the activity of individual signaling nodes over time and the assembly of protein complexes in space. Here, we outline how these recent innovations are being used in conjunction with engineering-influenced experimental design to address longstanding questions in signaling biology.

Mechanobiology of Protein Droplets: Force Arises from Disorder.

blue Cryptochromes LOV domains Review
Cell, 29 Nov 2018 DOI: 10.1016/j.cell.2018.11.020 Link to full text
Abstract: The use of optogenetic approaches has revealed new roles for intracellular protein condensates described in two papers in this issue of Cell (Bracha et. al., 2018; Shin et al., 2018). These results show that growing condensates are able to exert mechanical forces resulting in chromatin rearrangement, establishing a new role for liquid-liquid phase separation in the mechanobiology of the cell.

Optogenetic control of morphogenesis goes 3D.

blue Cryptochromes Review
EMBO J, 21 Nov 2018 DOI: 10.15252/embj.2018100961 Link to full text
Abstract: The generation of form in living embryos, a process termed “morphogenesis” from the Greek word lοqφοcέmerg, is one of the most fascinating unsolved problems in biology. In embryonic epithelia, most attention has been paid to events occurring at the apical surface of epithelia, particularly the regulation of actomyosin contractility during morphogenetic change. In a new report, De Renzis and colleagues demonstrate a key role for regulated actomyosin contractility at the basal surface of the epithelium during formation of the first epithelial fold in Drosophila (the “ventral furrow”) (Krueger et al, 2018).

Mitotic Spindle: Illuminating Spindle Positioning with a Biological Lightsaber.

blue LOV domains Review
Curr Biol, 19 Nov 2018 DOI: 10.1016/j.cub.2018.09.047 Link to full text
Abstract: In metazoans, positioning of the mitotic spindle is controlled by the microtubule-dependent motor protein dynein, which associates with the cell cortex. Using optogenetic tools, two new studies examine how the levels and activity of dynein are regulated at the cortex to ensure proper positioning of the mitotic spindle.

Programming Bacteria With Light—Sensors and Applications in Synthetic Biology

blue cyan green near-infrared red UV violet Cobalamin-binding domains Cryptochromes Cyanobacteriochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Front Microbiol, 8 Nov 2018 DOI: 10.3389/fmicb.2018.02692 Link to full text
Abstract: Photo-receptors are widely present in both prokaryotic and eukaryotic cells, which serves as the foundation of tuning cell behaviors with light. While practices in eukaryotic cells have been relatively established, trials in bacterial cells have only been emerging in the past few years. A number of light sensors have been engineered in bacteria cells and most of them fall into the categories of two-component and one-component systems. Such a sensor toolbox has enabled practices in controlling synthetic circuits at the level of transcription and protein activity which is a major topic in synthetic biology, according to the central dogma. Additionally, engineered light sensors and practices of tuning synthetic circuits have served as a foundation for achieving light based real-time feedback control. Here, we review programming bacteria cells with light, introducing engineered light sensors in bacteria and their applications, including tuning synthetic circuits and achieving feedback controls over microbial cell culture.

Diverse light responses of cyanobacteria mediated by phytochrome superfamily photoreceptors.

green red violet Cyanobacteriochromes Phytochromes Review
Nat Rev Microbiol, 8 Nov 2018 DOI: 10.1038/s41579-018-0110-4 Link to full text
Abstract: Cyanobacteria are an evolutionarily and ecologically important group of prokaryotes. They exist in diverse habitats, ranging from hot springs and deserts to glaciers and the open ocean. The range of environments that they inhabit can be attributed in part to their ability to sense and respond to changing environmental conditions. As photosynthetic organisms, one of the most crucial parameters for cyanobacteria to monitor is light. Cyanobacteria can sense various wavelengths of light and many possess a range of bilin-binding photoreceptors belonging to the phytochrome superfamily. Vital cellular processes including growth, phototaxis, cell aggregation and photosynthesis are tuned to environmental light conditions by these photoreceptors. In this Review, we examine the physiological responses that are controlled by members of this diverse family of photoreceptors and discuss the signal transduction pathways through which these photoreceptors operate. We highlight specific examples where the activities of multiple photoreceptors function together to fine-tune light responses. We also discuss the potential application of these photosensing systems in optogenetics and synthetic biology.

Bringing Light to Transcription: The Optogenetics Repertoire.

blue red UV Cryptochromes LOV domains Phytochromes UV receptors Review
Front Genet, 2 Nov 2018 DOI: 10.3389/fgene.2018.00518 Link to full text
Abstract: The ability to manipulate expression of exogenous genes in particular regions of living organisms has profoundly transformed the way we study biomolecular processes involved in both normal development and disease. Unfortunately, most of the classical inducible systems lack fine spatial and temporal accuracy, thereby limiting the study of molecular events that strongly depend on time, duration of activation, or cellular localization. By exploiting genetically engineered photo sensing proteins that respond to specific wavelengths, we can now provide acute control of numerous molecular activities with unprecedented precision. In this review, we present a comprehensive breakdown of all of the current optogenetic systems adapted to regulate gene expression in both unicellular and multicellular organisms. We focus on the advantages and disadvantages of these different tools and discuss current and future challenges in the successful translation to more complex organisms.

Optogenetic Medicine: Synthetic Therapeutic Solutions Precision-Guided by Light.

blue cyan green near-infrared red UV Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Cold Spring Harb Perspect Med, 5 Oct 2018 DOI: 10.1101/cshperspect.a034371 Link to full text
Abstract: Gene- and cell-based therapies are well recognized as central pillars of next-generation medicine, but controllability remains a critical issue for clinical applications. In this context, optogenetics is opening up exciting new opportunities for precision-guided medicine by using illumination with light of appropriate intensity and wavelength as a trigger signal to achieve pinpoint spatiotemporal control of cellular activities, such as transgene expression. In this review, we highlight recent advances in optogenetics, focusing on devices for biomedical applications. We introduce the construction and applications of optogenetic-based biomedical tools to treat neurological diseases, diabetes, heart diseases, and cancer, as well as bioelectronic implants that combine light-interfaced electronic devices and optogenetic systems into portable personalized precision bioelectronic medical tools. Optogenetics-based technology promises the capability to achieve traceless, remotely controlled precision dosing of an enormous range of therapeutic outputs. Finally, we discuss the prospects for optogenetic medicine, as well as some emerging challenges.

Light‐Controlled Mammalian Cells and Their Therapeutic Applications in Synthetic Biology.

blue cyan green near-infrared red UV BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Adv Sci, 30 Sep 2018 DOI: 10.1002/advs.201800952 Link to full text
Abstract: The ability to remote control the expression of therapeutic genes in mammalian cells in order to treat disease is a central goal of synthetic biology‐inspired therapeutic strategies. Furthermore, optogenetics, a combination of light and genetic sciences, provides an unprecedented ability to use light for precise control of various cellular activities with high spatiotemporal resolution. Recent work to combine optogenetics and therapeutic synthetic biology has led to the engineering of light‐controllable designer cells, whose behavior can be regulated precisely and noninvasively. This Review focuses mainly on non‐neural optogenetic systems, which are often used in synthetic biology, and their applications in genetic programing of mammalian cells. Here, a brief overview of the optogenetic tool kit that is available to build light‐sensitive mammalian cells is provided. Then, recently developed strategies for the control of designer cells with specific biological functions are summarized. Recent translational applications of optogenetically engineered cells are also highlighted, ranging from in vitro basic research to in vivo light‐controlled gene therapy. Finally, current bottlenecks, possible solutions, and future prospects for optogenetics in synthetic biology are discussed.

Lighting Up Cancer Dynamics.

red Phytochromes Review
Trends Cancer, 25 Sep 2018 DOI: 10.1016/j.trecan.2018.06.001 Link to full text
Abstract: Live-cell microscopy has revealed that signaling pathways carry elaborate time-varying activities. Yet, the connection between these dynamics and cellular disease has remained elusive. Recent work leverages cellular optogenetics to analyze the Ras-to-Erk transfer function in cancer cells. These analyses reveal how changes to the filtering properties of a pathway lead to the misperception of extracellular events. Overall, these studies suggest that mutations do not simply hyperactivate pathways but rather can also change their transmission properties in more subtle ways.

Switchable inteins for conditional protein splicing.

blue red LOV domains Phytochromes Review
Biol Chem, 18 Sep 2018 DOI: 10.1515/hsz-2018-0309 Link to full text
Abstract: Synthetic biologists aim at engineering controllable biological parts such as DNA, RNA and proteins in order to steer biological activities using external inputs. Proteins can be controlled in several ways, for instance by regulating the expression of their encoding genes with small molecules or light. However, post-translationally modifying pre-existing proteins to regulate their function or localization leads to faster responses. Conditional splicing of internal protein domains, termed inteins, is an attractive methodology for this purpose. Here we discuss methods to control intein activity with a focus on those compatible with applications in living cells.

Dynamic control of neural stem cells by bHLH factors.

blue LOV domains Review
Neurosci Res, 15 Sep 2018 DOI: 10.1016/j.neures.2018.09.005 Link to full text
Abstract: During brain development, neural stem cells change their competency to give sequential rise to neurons and glial cells. We found that expression of the basic helix-loop-helix (bHLH)-type cell-fate determination factors Ascl1, Olig2, and Hes1 is oscillatory in neural stem cells. Conversely, sustained expression of these factors mediates cell-fate determination. Optogenetic analyses suggest that oscillatory expression regulates maintenance and proliferation of neural stem cells, and that sustained expression induces cell-fate determination. Expression of the Notch ligand Delta-like1 (Dll1), which is controlled by Hes1 and Ascl1, is also oscillatory in neural stem cells. Mathematical modeling showed that if the timing of Dll1 expression is changed, Hes1 oscillations are severely dampened, resulting in impaired maintenance and proliferation of neural stem cells and causing microcephaly. Another bHLH factor, Hes5, also shows oscillatory expression in neural stem cells. Hes5 overexpression and knock-out result in abnormal Hmga1 and Hmga2 expression, which are essential for timings the switching of neural stem-cell competency. These data indicate that oscillatory expression of bHLH factors is important for normal neural stem-cell function in the developing nervous system.

CRAC channel-based optogenetics.

blue Cryptochromes LOV domains Review
Cell Calcium, 3 Sep 2018 DOI: 10.1016/j.ceca.2018.08.007 Link to full text
Abstract: Store-operated Ca²+ entry (SOCE) constitutes a major Ca2+ influx pathway in mammals to regulate a myriad of physiological processes, including muscle contraction, synaptic transmission, gene expression, and metabolism. In non-excitable cells, the Ca²+ release-activated Ca²+ (CRAC) channel, composed of ORAI and stromal interaction molecules (STIM), constitutes a prototypical example of SOCE to mediate Ca2+ entry at specialized membrane contact sites (MCSs) between the endoplasmic reticulum (ER) and the plasma membrane (PM). The key steps of SOCE activation include the oligomerization of the luminal domain of the ER-resident Ca2+ sensor STIM1 upon Ca²+ store depletion, subsequent signal propagation toward the cytoplasmic domain to trigger a conformational switch and overcome the intramolecular autoinhibition, and ultimate exposure of the minimal ORAI-activating domain to directly engage and gate ORAI channels in the plasma membrane. This exquisitely coordinated cellular event is also facilitated by the C-terminal polybasic domain of STIM1, which physically associates with negatively charged phosphoinositides embedded in the inner leaflet of the PM to enable efficient translocation of STIM1 into ER-PM MCSs. Here, we present recent progress in recapitulating STIM1-mediated SOCE activation by engineering CRAC channels with optogenetic approaches. These STIM1-based optogenetic tools make it possible to not only mechanistically recapture the key molecular steps of SOCE activation, but also remotely and reversibly control Ca²+-dependent cellular processes, inter-organellar tethering at MCSs, and transcriptional reprogramming when combined with CRISPR/Cas9-based genome-editing tools.

Synergistic Ensemble of Optogenetic Actuators and Dynamic Indicators in Cell Biology.

blue Cryptochromes Review
Mol Cells, 29 Aug 2018 DOI: 10.14348/molcells.2018.0295 Link to full text
Abstract: Discovery of the naturally evolved fluorescent proteins and their genetically engineered biosensors have enormously contributed to current bio-imaging techniques. These reporters to trace dynamic changes of intracellular protein activities have continuously transformed according to the various demands in biological studies. Along with that, light-inducible optogenetic technologies have offered scientists to perturb, control and analyze the function of intracellular machineries in spatiotemporal manner. In this review, we present an overview of the molecular strategies that have been exploited for producing genetically encoded protein reporters and various optogenetic modules. Finally, in particular, we discuss the current efforts for combined use of these reporters and optogenetic modules as a powerful tactic for the control and imaging of signaling events in cells and tissues.
Submit a new publication to our database