Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 676 - 700 of 1700 results
676.

Spatio-temporal Control of ERK Pulse Frequency Coordinates Fate Decisions during Mammary Acinar Morphogenesis.

blue CRY2/CIB1 CRY2/CRY2 MCF10A Signaling cascade control Cell differentiation Cell death
bioRxiv, 21 Nov 2020 DOI: 10.1101/2020.11.20.387167 Link to full text
Abstract: The signaling events controlling proliferation, survival, and apoptosis during mammary epithelial acinar morphogenesis remain poorly characterized. By imaging single-cell ERK activity dynamics in MCF10A acini, we find that these fates depend on the frequency of ERK pulses. High pulse frequency is observed during initial acinus growth, correlating with rapid cell motility. Subsequent decrease in motility correlates with lower ERK pulse frequency and quiescence. Later, during lumen formation, coordinated ERK waves emerge across multiple cells of an acinus, correlating with high and low ERK pulse frequency in outer surviving and inner dying cells respectively. A PIK3CA H1047R mutation, commonly observed in breast cancer, increases ERK pulse frequency and inner cell survival, causing loss of lumen formation. Optogenetic entrainment of ERK pulses causally connects high ERK pulse frequency with inner cell survival. Thus, fate decisions during acinar morphogenesis are fine-tuned by different spatio-temporal coordination modalities of ERK pulse frequency.
677.

Single-Protein Tracking to Study Protein Interactions During Integrin-Based Migration.

blue CRY2/CIB1 MEF-1 Control of cytoskeleton / cell motility / cell shape
Methods Mol Biol, 20 Nov 2020 DOI: 10.1007/978-1-0716-0962-0_8 Link to full text
Abstract: Cell migration is a complex biophysical process which involves the coordination of molecular assemblies including integrin-dependent adhesions, signaling networks and force-generating cytoskeletal structures incorporating both actin polymerization and myosin activity. During the last decades, proteomic studies have generated impressive protein-protein interaction maps, although the subcellular location, duration, strength, sequence, and nature of these interactions are still concealed. In this chapter we describe how recent developments in superresolution microscopy (SRM) and single-protein tracking (SPT) start to unravel protein interactions and actions in subcellular molecular assemblies driving cell migration.
678.

Spatiotemporal sensitivity of embryonic heart specification to FGFR signaling in Drosophila.

blue CRY2/CRY2 D. melanogaster in vivo Signaling cascade control Developmental processes
bioRxiv, 19 Nov 2020 DOI: 10.1101/2020.11.16.384123 Link to full text
Abstract: Development of the Drosophila embryonic mesoderm is controlled through both internal and external inputs to the mesoderm. One such factor is Heartless (Htl), a Fibroblast Growth Factor Receptor (FGFR) expressed in the mesoderm. Htl is involved in shaping the mesoderm at both early and later stages during embryogenesis. How Htl expression levels and timing of signaling affect mesoderm morphogenesis after spreading remains elusive. We have developed an optogenetic tool (Opto-htl) to control the activation of Htl signaling with precise spatiotemporal resolution in vivo. We find that the embryo is most sensitive to Htl over-activation within a developmental window of ~4 hours ranging from late stage 10 until early stage 13, which corresponds to early stages of heart morphogenesis. Opto-htl restores heart cells in htl mutants upon light activation, independent of its role in early mesoderm shaping events. We also successfully generated spatially distinct regions of Htl activity in the mesoderm using light-sheet microscopy. The developing tissue was unable to correct for the ensuing asymmetries in cell fate. Overall, Opto-htl is a powerful tool for studying spatiotemporal regulation of Htl signaling during embryogenesis.
679.

Rho1 activation recapitulates early gastrulation events in the ventral, but not dorsal, epithelium of Drosophila embryos.

blue iLID D. melanogaster in vivo Developmental processes
Elife, 17 Nov 2020 DOI: 10.7554/elife.56893 Link to full text
Abstract: Ventral furrow formation, the first step in Drosophila gastrulation, is a well-studied example of tissue morphogenesis. Rho1 is highly active in a subset of ventral cells and is required for this morphogenetic event. However, it is unclear whether spatially patterned Rho1 activity alone is sufficient to recapitulate all aspects of this morphogenetic event, including anisotropic apical constriction and coordinated cell movements. Here, using an optogenetic probe that rapidly and robustly activates Rho1 in Drosophila tissues, we show that Rho1 activity induces ectopic deformations in the dorsal and ventral epithelia of Drosophila embryos. These perturbations reveal substantial differences in how ventral and dorsal cells, both within and outside the zone of Rho1 activation, respond to spatially and temporally identical patterns of Rho1 activation. Our results demonstrate that an asymmetric zone of Rho1 activity is not sufficient to recapitulate ventral furrow formation and reveal that additional, ventral-specific factors contribute to the cell- and tissue-level behaviors that emerge during ventral furrow formation.
680.

Structural insights into the photoactivation of Arabidopsis CRY2.

blue Cryptochromes Background
Nat Plants, 16 Nov 2020 DOI: 10.1038/s41477-020-00800-1 Link to full text
Abstract: The blue-light receptor cryptochrome (CRY) in plants undergoes oligomerization to transduce blue-light signals after irradiation, but the corresponding molecular mechanism remains poorly understood. Here, we report the cryogenic electron microscopy structure of a blue-light-activated CRY2 tetramer at a resolution of 3.1 Å, which shows how the CRY2 tetramer assembles. Our study provides insights into blue-light-mediated activation of CRY2 and a theoretical basis for developing regulators of CRYs for optogenetic manipulation.
681.

Creating Red Light-Switchable Protein Dimerization Systems as Genetically Encoded Actuators with High Specificity.

near-infrared red BphP1/PpsR2 DrBphP HEK293T HeLa mouse in vivo S. cerevisiae
ACS Synth Biol, 12 Nov 2020 DOI: 10.1021/acssynbio.0c00397 Link to full text
Abstract: Protein dimerization systems controlled by red light with increased tissue penetration depth are a highly needed tool for clinical applications such as cell and gene therapies. However, mammalian applications of existing red light-induced dimerization systems are hampered by limitations of their two components: a photosensory protein (or photoreceptor) which often requires a mammalian exogenous chromophore and a naturally occurring photoreceptor binding protein typically having a complex structure and nonideal binding properties. Here, we introduce an efficient, generalizable method (COMBINES-LID) for creating highly specific, reversible light-induced heterodimerization systems independent of any existing binders to a photoreceptor. It involves a two-step binder screen (phage display and yeast two-hybrid) of a combinatorial nanobody library to obtain binders that selectively engage a light-activated form of a photoswitchable protein or domain not the dark form. Proof-of-principle was provided by engineering nanobody-based, red light-induced dimerization (nanoReD) systems comprising a truncated bacterial phytochrome sensory module using a mammalian endogenous chromophore, biliverdin, and light-form specific nanobodies. Selected nanoReD systems were biochemically characterized, exhibiting low dark activity and high induction specificity, and further demonstrated for the reversible control of protein translocation and activation of gene expression in mice. Overall, COMBINES-LID opens new opportunities for creating genetically encoded actuators for the optical manipulation of biological processes.
682.

A versatile oblique plane microscope for large-scale and high-resolution imaging of subcellular dynamics.

blue AsLOV2 MV3 Control of cytoskeleton / cell motility / cell shape
Elife, 12 Nov 2020 DOI: 10.7554/elife.57681 Link to full text
Abstract: We present an oblique plane microscope (OPM) that uses a bespoke glass-tipped tertiary objective to improve the resolution, field of view, and usability over previous variants. Owing to its high numerical aperture optics, this microscope achieves lateral and axial resolutions that are comparable to the square illumination mode of lattice light-sheet microscopy, but in a user friendly and versatile format. Given this performance, we demonstrate high-resolution imaging of clathrin-mediated endocytosis, vimentin, the endoplasmic reticulum, membrane dynamics, and Natural Killer-mediated cytotoxicity. Furthermore, we image biological phenomena that would be otherwise challenging or impossible to perform in a traditional light-sheet microscope geometry, including cell migration through confined spaces within a microfluidic device, subcellular photoactivation of Rac1, diffusion of cytoplasmic rheological tracers at a volumetric rate of 14 Hz, and large field of view imaging of neurons, developing embryos, and centimeter-scale tissue sections.
683.

Optimized Vivid-derived Magnets photodimerizers for subcellular optogenetics in mammalian cells.

blue Magnets Cos-7 HeLa Organelle manipulation
Elife, 11 Nov 2020 DOI: 10.7554/elife.63230 Link to full text
Abstract: Light-inducible dimerization protein modules enable precise temporal and spatial control of biological processes in non-invasive fashion. Among them, Magnets are small modules engineered from the Neurospora crassa photoreceptor Vivid by orthogonalizing the homodimerization interface into complementary heterodimers. Both Magnets components, which are well-tolerated as protein fusion partners, are photoreceptors requiring simultaneous photoactivation to interact, enabling high spatiotemporal confinement of dimerization with a single-excitation wavelength. However, Magnets require concatemerization for efficient responses and cell preincubation at 28oC to be functional. Here we overcome these limitations by engineering an optimized Magnets pair requiring neither concatemerization nor low temperature preincubation. We validated these 'enhanced' Magnets (eMags) by using them to rapidly and reversibly recruit proteins to subcellular organelles, to induce organelle contacts, and to reconstitute OSBP-VAP ER-Golgi tethering implicated in phosphatidylinositol-4-phosphate transport and metabolism. eMags represent a very effective tool to optogenetically manipulate physiological processes over whole cells or in small subcellular volumes.
684.

Optogenetic investigation of BMP target gene expression diversity.

blue VfAU1-LOV zebrafish in vivo Endogenous gene expression Developmental processes
Elife, 11 Nov 2020 DOI: 10.7554/elife.58641 Link to full text
Abstract: Signaling molecules activate distinct patterns of gene expression to coordinate embryogenesis, but how spatiotemporal expression diversity is generated is an open question. In zebrafish, a BMP signaling gradient patterns the dorsal-ventral axis. We systematically identified target genes responding to BMP and found that they have diverse spatiotemporal expression patterns. Transcriptional responses to optogenetically delivered high- and low-amplitude BMP signaling pulses indicate that spatiotemporal expression is not fully defined by different BMP signaling activation thresholds. Additionally, we observed negligible correlations between spatiotemporal expression and transcription kinetics for the majority of analyzed genes in response to BMP signaling pulses. In contrast, spatial differences between BMP target genes largely collapsed when FGF and Nodal signaling were inhibited. Our results suggest that, similar to other patterning systems, combinatorial signaling is likely to be a major driver of spatial diversity in BMP-dependent gene expression in zebrafish.
685.

Synthetic protein condensates that recruit and release protein activity in living cells.

blue LOVTRAP HeLa
bioRxiv, 10 Nov 2020 DOI: 10.1101/2020.11.09.375766 Link to full text
Abstract: Compartmentation of proteins into biomolecular condensates or membraneless organelles formed by phase separation is an emerging principle for the regulation of cellular processes. Creating synthetic condensates that accommodate specific intracellular proteins on demand would have various applications in chemical biology, cell engineering and synthetic biology. Here, we report the construction of synthetic protein condensates capable of recruiting and/or releasing proteins of interest in living mammalian cells in response to a small molecule or light. We first present chemogenetic protein-recruiting and -releasing condensates, which rapidly inhibited and activated signaling proteins, respectively. An optogenetic condensate system was successfully constructed that enables reversible release and sequestration of protein activity using light. This proof-of-principle work provides a new platform for chemogenetic and optogenetic control of protein activity in mammalian cells and represents a step towards tailor-made engineering of synthetic protein condensates with various functionalities.
686.

Improvement of Phycocyanobilin Synthesis for Genetically Encoded Phytochrome-Based Optogenetics.

red PhyB/PIF3 HeLa mESCs Xenopus in vivo
ACS Chem Biol, 9 Nov 2020 DOI: 10.1021/acschembio.0c00477 Link to full text
Abstract: Optogenetics is a powerful technique using photoresponsive proteins, and the light-inducible dimerization (LID) system, an optogenetic tool, allows to manipulate intracellular signaling pathways. One of the red/far-red responsive LID systems, phytochrome B (PhyB)-phytochrome interacting factor (PIF), has a unique property of controlling both association and dissociation by light on the second time scale, but PhyB requires a linear tetrapyrrole chromophore such as phycocyanobilin (PCB), and such chromophores are present only in higher plants and cyanobacteria. Here, we report that we further improved our previously developed PCB synthesis system (SynPCB) and successfully established a stable cell line containing a genetically encoded PhyB-PIF LID system. First, four genes responsible for PCB synthesis, namely, PcyA, HO1, Fd, and Fnr, were replaced with their counterparts derived from thermophilic cyanobacteria. Second, Fnr was truncated, followed by fusion with Fd to generate a chimeric protein, tFnr-Fd. Third, these genes were concatenated with P2A peptide cDNAs for polycistronic expression, resulting in an approximately 4-fold increase in PCB synthesis compared with the previous version. Finally, we incorporated the PhyB, PIF, and SynPCB system into drug inducible lentiviral and transposon vectors, which enabled us to induce PCB synthesis and the PhyB-PIF LID system by doxycycline treatment. These tools provide a new opportunity to advance our understanding of the causal relationship between intracellular signaling and cellular functions.
687.

Biphasic Response of Protein Kinase A to Cyclic Adenosine Monophosphate Triggers Distinct Epithelial Phenotypes.

blue bPAC (BlaC) MDCK Immediate control of second messengers
bioRxiv, 3 Nov 2020 DOI: 10.1101/747030 Link to full text
Abstract: Despite the large diversity of the proteins involved in cellular signaling, many intracellular signaling pathways converge onto one of only dozens of small molecule second messengers. Cyclic adenosine monophosphate (cAMP), one of these second messengers, is known to regulate activity of both Protein Kinase A (PKA) and the Extracellular Regulated Kinase (ERK), among other signaling pathways. In its role as an important cellular signaling hub, intracellular cAMP concentration has long been assumed to monotonically regulate its known effectors. Using an optogenetic tool that can introduce precise amounts of cAMP in MDCKI cells, we identify genes whose expression changes biphasically with monotonically increasing cAMP levels. By examining the behavior of PKA and ERK1/2 in the same dose regime, we find that these kinases also respond biphasically to increasing cAMP levels, with opposite phases. We reveal that this behavior results from an elaborate integration by PKA of many cellular signals triggered by cAMP. In addition to the direct activation of PKA, cAMP also modulates the activity of p38 and ERK, which then converge to inhibit PKA. These interactions and their ensuing biphasic PKA profile have important physiological repercussions, influencing the ability of MDCKI cells to proliferate and form acini. Our data, supported by computational modeling, synthesize a set of network interconnections involving PKA and other important signaling pathways into a model that demonstrates how cells can capitalize on signal integration to create a diverse set of responses to cAMP concentration and produce complex input-output relationships.
688.

Optogenetic regulation of embryo implantation in mice using photoactivatable CRISPR-Cas9.

blue Magnets mouse in vivo Nucleic acid editing
Proc Natl Acad Sci U S A, 2 Nov 2020 DOI: 10.1073/pnas.2016850117 Link to full text
Abstract: Embryo implantation is achieved upon successful interaction between a fertilized egg and receptive endometrium and is mediated by spatiotemporal expression of implantation-associated molecules including leukemia inhibitory factor (LIF). Here we demonstrate, in mice, that LIF knockdown via a photoactivatable CRISPR-Cas9 gene editing system and illumination with a light-emitting diode can spatiotemporally disrupt fertility. This system enables dissection of spatiotemporal molecular mechanisms associated with embryo implantation and provides a therapeutic strategy for temporal control of reproductive functions in vivo.
689.

Light-inducible Deformation of Mitochondria in Live Cells.

blue CRY2/CIB1 iLID 3T3-L1 Cos-7 HeLa U-2 OS Organelle manipulation
bioRxiv, 2 Nov 2020 DOI: 10.1101/2020.11.01.363663 Link to full text
Abstract: Mitochondria, the powerhouse of the cell, are dynamic organelles that undergo constant morphological changes. Increasing evidence indicates that mitochondria morphologies and functions can be modulated by mechanical cues. However, the mechano-sensing and -responding properties of mitochondria and the correlation between mitochondrial morphologies and functions are unclear due to the lack of methods to precisely exert mechano-stimulation on and deform mitochondria inside live cells. Here we present an optogenetic approach that uses light to induce deformation of mitochondria by recruiting molecular motors to the outer mitochondrial membrane via light-activated protein-protein hetero-dimerization. Mechanical forces generated by motor proteins distort the outer membrane, during which the inner mitochondrial membrane can also be deformed. Moreover, this optical method can achieve subcellular spatial precision and be combined with other optical dimerizers and molecular motors. This method presents a novel mitochondria-specific mechano-stimulator for studying mitochondria mechanobiology and the interplay between mitochondria shapes and functions.
690.

β-Catenin signaling dynamics regulate cell fate in differentiating neural stem cells.

blue CRY2/CRY2 rat hippocampal NSCs Cell differentiation
Proc Natl Acad Sci U S A, 2 Nov 2020 DOI: 10.1073/pnas.2008509117 Link to full text
Abstract: Stem cells undergo differentiation in complex and dynamic environments wherein instructive signals fluctuate on various timescales. Thus, cells must be equipped to properly respond to the timing of signals, for example, to distinguish sustained signaling from transient noise. However, how stem cells respond to dynamic variations in differentiation cues is not well characterized. Here, we use optogenetic activation of β-catenin signaling to probe the dynamic responses of differentiating adult neural stem cells (NSCs). We discover that, while elevated, sustained β-catenin activation sequentially promotes proliferation and differentiation, transient β-catenin induces apoptosis. Genetic perturbations revealed that the neurogenic/apoptotic fate switch was mediated through cell-cycle regulation by Growth Arrest and DNA Damage 45 gamma (Gadd45γ). Our results thus reveal a role for β-catenin dynamics in NSC fate decisions and may suggest a role for signal timing to minimize cell-fate errors, analogous to kinetic proofreading of stem-cell differentiation.
691.

The proline-rich domain promotes Tau liquid-liquid phase separation in cells.

blue CRY2olig SH-SY5Y Control of cytoskeleton / cell motility / cell shape Organelle manipulation
J Cell Biol, 2 Nov 2020 DOI: 10.1083/jcb.202006054 Link to full text
Abstract: Tau protein in vitro can undergo liquid-liquid phase separation (LLPS); however, observations of this phase transition in living cells are limited. To investigate protein state transitions in living cells, we attached Cry2 to Tau and studied the contribution of each domain that drives the Tau cluster in living cells. Surprisingly, the proline-rich domain (PRD), not the microtubule binding domain (MTBD), drives LLPS and does so under the control of its phosphorylation state. Readily observable, PRD-derived cytoplasmic condensates underwent fusion and fluorescence recovery after photobleaching consistent with the PRD LLPS in vitro. Simulations demonstrated that the charge properties of the PRD predicted phase separation. Tau PRD formed heterotypic condensates with EB1, a regulator of plus-end microtubule dynamic instability. The specific domain properties of the MTBD and PRD serve distinct but mutually complementary roles that use LLPS in a cellular context to implement emergent functionalities that scale their relationship from binding α-beta tubulin heterodimers to the larger proportions of microtubules.
692.

Quantifying signal persistence in the T cell signaling network using an optically controllable antigen receptor.

blue LOVTRAP HEK293T Jurkat Signaling cascade control
bioRxiv, 30 Oct 2020 DOI: 10.1101/2020.10.30.362194 Link to full text
Abstract: T cells discriminate between healthy and infected cells with remarkable sensitivity when mounting an immune response. It has been hypothesized that this efficient detection requires combining signals from discrete antigen-presenting cell interactions into a more potent response, requiring T cells to maintain a ‘memory’ of previous encounters. To quantify the magnitude of this phenomenon, we have developed an antigen receptor that is both optically and chemically tunable, providing control over the initiation, duration, and intensity of intracellular T-cell signaling within physiological cell conjugates. We observe very limited persistence within the T cell intracellular network on disruption of receptor input, with signals dissipating entirely in ~15 minutes, and directly confirm that sustained proximal receptor signaling is required to maintain active gene transcription. Our data suggests that T cells are largely incapable of integrating discrete antigen receptor signals but instead simply accumulate the output of gene expression. By engineering optical control in a clinically relevant chimeric antigen receptor, we show that this limited signal persistence can be exploited to increase the activation of primary T cells by ~3-fold by using pulsatile stimulation. Our results are likely to apply more generally to the signaling dynamics of other cellular networks.
693.

The rise and shine of yeast optogenetics.

blue green near-infrared red UV BLUF domains Cryptochromes Cyanobacteriochromes LOV domains Phytochromes UV receptors Review
Yeast, 29 Oct 2020 DOI: 10.1002/yea.3529 Link to full text
Abstract: Optogenetics refers to the control of biological processes with light. The activation of cellular phenomena by defined wavelengths has several advantages compared to traditional chemically-inducible systems, such as spatiotemporal resolution, dose-response regulation, low cost and moderate toxic effects. Optogenetics has been successfully implemented in yeast, a remarkable biological platform that is not only a model organism for cellular and molecular biology studies, but also a microorganism with diverse biotechnological applications. In this review, we summarize the main optogenetic systems implemented in the budding yeast Saccharomyces cerevisiae, which allow orthogonal control (by light) of gene expression, protein subcellular localization, reconstitution of protein activity, or protein sequestration by oligomerization. Furthermore, we review the application of optogenetic systems in the control of metabolic pathways, heterologous protein production and flocculation. We then revise an example of a previously described yeast optogenetic switch, named FUN-LOV, which allows precise and strong activation of the target gene. Finally, we describe optogenetic systems that have not yet been implemented in yeast, which could therefore be used to expand the panel of available tools in this biological chassis. In conclusion, a wide repertoire of optogenetic systems can be used to address fundamental biological questions and broaden the biotechnological toolkit in yeast.
694.

Optogenetical control of infection signaling cascade of bacteria by an engineered light-responsive protein.

blue YtvA P. aeruginosa P. aeruginosa
bioRxiv, 29 Oct 2020 DOI: 10.1101/2020.10.28.358515 Link to full text
Abstract: Bacterial pathogens operate by tightly controlling the virulence to facilitate invasion and survival in host. Although pathways regulating virulence have been defined in detail and signals modulating these processes are gradually understood, a lack of controlling infection signaling cascades of pathogens when and whereabouts specificity limits deeper investigating of host-pathogen interactions. Here, we employed optogenetics to reengineer the GacS of Pseudomonas aeruginosa, sensor kinase of GacS/GacA TCS regulates the expression of virulence factors by directly mediating several sRNAs. The resultant protein YGS24 displayed significant light-dependent activity of GacS kinases in Pseudomonas aeruginosa. When introduced in Caenorhabditis elegans host systems, YGS24 stimulated the pathogenicity of PAO1 in BHI and of PA14 in SK medium progressively upon blue-light exposure. This optogenetic system provides an accessible way to spatiotemporally control bacterial pathogenicity in defined host even specific tissues to develop new pathogenesis systems, which may in turn expedite development of innovative therapeutics.
695.

Enlightening Allostery: Designing Switchable Proteins by Photoreceptor Fusion.

blue LOV domains Review
Adv Biosyst, 26 Oct 2020 DOI: 10.1002/adbi.202000181 Link to full text
Abstract: Optogenetics harnesses natural photoreceptors to non-invasively control selected processes in cells with previously unmet spatiotemporal precision. Linking the activity of a protein of choice to the conformational state of a photosensor domain through allosteric coupling represents a powerful method for engineering light-responsive proteins. It enables the design of compact and highly potent single-component optogenetic systems with fast on- and off-switching kinetics. However, designing protein-photoreceptor chimeras, in which structural changes of the photoreceptor are effectively propagated to the fused effector protein, is a challenging engineering problem and often relies on trial and error. Here, recent advances in the design and application of optogenetic allosteric switches are reviewed. First, an overview of existing optogenetic tools based on inducible allostery is provided and their utility for cell biology applications is highlighted. Focusing on light-oxygen-voltage domains, a widely applied class of small blue light sensors, the available strategies for engineering light-dependent allostery are presented and their individual advantages and limitations are highlighted. Finally, high-throughput screening technologies based on comprehensive insertion libraries, which could accelerate the creation of stimulus-responsive receptor-protein chimeras for use in optogenetics and beyond, are discussed.
696.

SynaptoPAC, an optogenetic tool for induction of presynaptic plasticity.

blue bPAC (BlaC) mouse hippocampal slices ND7/23 rat dentate gyrus granule neurons rat hippocampal neurons Neuronal activity control
J Neurochem, 22 Oct 2020 DOI: 10.1111/jnc.15210 Link to full text
Abstract: Optogenetic manipulations have transformed neuroscience in recent years. While sophisticated tools now exist for controlling the firing patterns of neurons, it remains challenging to optogenetically define the plasticity state of individual synapses. A variety of synapses in the mammalian brain express presynaptic long-term potentiation (LTP) upon elevation of presynaptic cyclic adenosine monophosphate (cAMP), but the molecular expression mechanisms as well as the impact of presynaptic LTP on network activity and behavior are not fully understood. In order to establish optogenetic control of presynaptic cAMP levels and thereby presynaptic potentiation, we developed synaptoPAC, a presynaptically targeted version of the photoactivated adenylyl cyclase bPAC. In cultures of hippocampal granule cells of Wistar rats, activation of synaptoPAC with blue light increased action potential-evoked transmission, an effect not seen in hippocampal cultures of non-granule cells. In acute brain slices of C57BL/6N mice, synaptoPAC activation immediately triggered a strong presynaptic potentiation at mossy fiber synapses in CA3, but not at Schaffer collateral synapses in CA1. Following light-triggered potentiation, mossy fiber transmission decreased within 20 min, but remained enhanced still after 30 min. The optogenetic potentiation altered the short-term plasticity dynamics of release, reminiscent of presynaptic LTP. Our work establishes synaptoPAC as an optogenetic tool that enables acute light-controlled potentiation of transmitter release at specific synapses in the brain, facilitating studies of the role of presynaptic potentiation in network function and animal behavior in an unprecedented manner. Read the Editorial Highlight for this article on page 270.
697.

Optogenetic Control of the BMP Signaling Pathway.

blue VfAU1-LOV HEK293T hESCs SW 1353 T/C28a2 Signaling cascade control
ACS Synth Biol, 21 Oct 2020 DOI: 10.1021/acssynbio.0c00315 Link to full text
Abstract: Bone morphogenetic proteins (BMPs) are members of the transforming growth factor β (TGFβ) superfamily and have crucial roles during development; including mesodermal patterning and specification of renal, hepatic, and skeletal tissues. In vitro developmental models currently rely upon costly and unreliable recombinant BMP proteins that do not enable dynamic or precise activation of the BMP signaling pathway. Here, we report the development of an optogenetic BMP signaling system (optoBMP) that enables rapid induction of the canonical BMP signaling pathway driven by illumination with blue light. We demonstrate the utility of the optoBMP system in multiple human cell lines to initiate signal transduction through phosphorylation and nuclear translocation of SMAD1/5, leading to upregulation of BMP target genes including Inhibitors of DNA binding ID2 and ID4. Furthermore, we demonstrate how the optoBMP system can be used to fine-tune activation of the BMP signaling pathway through variable light stimulation. Optogenetic control of BMP signaling will enable dynamic and high-throughput intervention across a variety of applications in cellular and developmental systems.
698.

Optogenetics in plants.

blue green red UV Cobalamin-binding domains Cryptochromes LOV domains Phytochromes UV receptors Review
New Phytol, 16 Oct 2020 DOI: 10.1111/nph.17008 Link to full text
Abstract: The last two decades have witnessed the emergence of optogenetics; a field that has given researchers the ability to use light to control biological processes at high spatio-temporal and quantitative resolution, in a reversible manner with minimal side effects. Optogenetics has revolutionised the neurosciences, increased our understanding of cellular signalling and metabolic networks and resulted in variety of applications in biotechnology and biomedicine. However, implementing optogenetics in plants has been less straight forward given their dependency on light for their life cycle. Here, we highlight some of the widely used technologies in microorganisms and animal systems derived from plant photoreceptor proteins and discuss strategies recently implemented to overcome the challenges for using optogenetics in plants.
699.

Mechanical competition alters the cellular interpretation of an endogenous genetic programme.

blue CRY2/CIB1 D. melanogaster in vivo Developmental processes
bioRxiv, 15 Oct 2020 DOI: 10.1101/2020.10.15.333963 Link to full text
Abstract: The intrinsic genetic programme of a cell is not sufficient to explain all of the cell’s activities. External mechanical stimuli are increasingly recognized as determinants of cell behaviour. In the epithelial folding event that constitutes the beginning of gastrulation in Drosophila, the genetic programme of the future mesoderm leads to the establishment of a contractile actomyosin network that triggers apical constriction of cells, and thereby, furrow formation. However, some cells do not constrict but instead stretch, even though they share the same genetic programme as their constricting neighbours. We show here that tissue-wide interactions force these cells to expand even when an otherwise sufficient amount of apical, active actomyosin is present. Models based on contractile forces and linear stress-strain responses are not sufficient to reproduce experimental observations, but simulations in which cells behave as ductile materials with non-linear mechanical properties do. Our models show that this behaviour is a general emergent property of supracellular actomyosin networks, in accordance with our experimental observations of actin reorganisation within stretching cells.
700.

Reverse and Forward Engineering Multicellular Structures with Optogenetics.

blue red Cryptochromes LOV domains Phytochromes Background
Curr Opin Biomed Eng, 14 Oct 2020 DOI: 10.1016/j.cobme.2020.100250 Link to full text
Abstract: Understanding how cells self-organize into functional higher-order structures is of great interest, both towards deciphering animal development, as well as for our ability to predictably build custom tissues to meet research and therapeutic needs. The proper organization of cells across length-scales results from interconnected and dynamic networks of molecules and cells. Optogenetic probes provide dynamic and tunable control over molecular events within cells, and thus represent a powerful approach to both dissect and control collective cell behaviors. Here we emphasize the breadth of the optogenetic toolkit and discuss how these methods have already been used to reverse-engineer the design rules of developing organisms. We also offer our perspective on the rich potential for optogenetics to power forward-engineering of tissue assembly towards the generation of bespoke tissues with user-defined properties.
Submit a new publication to our database