Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 701 - 725 of 1700 results
701.

Multichromatic Control of Signaling Pathways in Mammalian Cells.

blue red CRY2/CIB1 PhyB/PIF6 HEK293 Signaling cascade control Multichromatic
Adv Biosyst, 12 Oct 2020 DOI: 10.1002/adbi.202000196 Link to full text
Abstract: The precise control of signaling proteins is a prerequisite to decipher the complexity of the signaling network and to reveal and to study pathways involved in regulating cellular metabolism and gene expression. Optogenetic approaches play an emerging role as they enable the spatiotemporal control of signaling processes. Herein, a multichromatic system is developed by combining the blue light cryptochrome 2 system and the red/far-red light phytochrome B system. The use of three wavelengths allows the orthogonal control of the RAF/ERK and the AKT signaling pathway. Continuous exposure of cells to blue light leads to activation of AKT while simultaneous pulses of red and far-red light enable the modulation of ERK signaling in cells with constantly active AKT signaling. The optimized, orthogonal multichromatic system presented here is a valuable tool to better understand the fine grained and intricate processes involved in cell fate decisions.
702.

Optogenetic interrogation and control of cell signaling.

blue cyan green near-infrared red Cryptochromes Cyanobacteriochromes Fluorescent proteins LOV domains Phytochromes Review
Curr Opin Biotechnol, 11 Oct 2020 DOI: 10.1016/j.copbio.2020.07.007 Link to full text
Abstract: Signaling networks control the flow of information through biological systems and coordinate the chemical processes that constitute cellular life. Optogenetic actuators - genetically encoded proteins that undergo light-induced changes in activity or conformation - are useful tools for probing signaling networks over time and space. They have permitted detailed dissections of cellular proliferation, differentiation, motility, and death, and enabled the assembly of synthetic systems with applications in areas as diverse as photography, chemical synthesis, and medicine. In this review, we provide a brief introduction to optogenetic systems and describe their application to molecular-level analyses of cell signaling. Our discussion highlights important research achievements and speculates on future opportunities to exploit optogenetic systems in the study and assembly of complex biochemical networks.
703.

Livecell reporters reveal bidirectional acceleration of nucleocytoplasmic transport by O-GlcNAc modification of the nuclear pore complex.

blue AsLOV2 U-2 OS
bioRxiv, 10 Oct 2020 DOI: 10.1101/2020.10.09.334029 Link to full text
Abstract: Macromolecular transportacross the nuclear envelope is fundamental to eukaryotic cells and depends on facilitated diffusion through nuclear pore complexes (NPCs). The interior of NPCs contains apermeability barriermade of phenylalanine-glycine (FG) repeat domainsthat selectively facilitatesthe permeation ofcargoes bound to nuclear transport receptors (NTRs)1,2.The NPC is enriched in O-linked N-acetylglucosamine (O-GlcNAc) modification3-8, but itsfunctional rolein nucleocytoplasmic transport isunclear. We developed high-throughput assaysbased on optogenetic probes to quantify the kinetics of nuclear import and exportin living human cells and showedthat the O-GlcNAc modification of the NPC accelerates the nucleocytoplasmic transport in both directions.Super-resolution imaging of O-GlcNAc revealed strong enrichmentat the FG barrier ofthe NPC channel. O-GlcNAcmodificationalso promoted the passive permeation of a small,inert protein through NPCs.Our results suggest that O-GlcNAc modification acceleratesnucleocytoplasmic transport by enhancingthe non-specific permeabilitythe FG-repeat barrier.
704.

Upconversion optogenetic micro-nanosystem optically controls the secretion of light-responsive bacteria for systemic immunity regulation.

blue YtvA E. coli L. lactis Transgene expression
Commun Biol, 9 Oct 2020 DOI: 10.1038/s42003-020-01287-4 Link to full text
Abstract: Chemical molecules specifically secreted into the blood and targeted tissues by intestinal microbiota can effectively affect the associated functions of the intestine especially immunity, representing a new strategy for immune-related diseases. However, proper ways of regulating the secretion metabolism of specific strains still remain to be established. In this article, an upconversion optogenetic micro-nanosystem was constructed to effectively regulate the specific secretion of engineered bacteria. The system included two major modules: (i) Modification of secretory light-responsive engineered bacteria. (ii) Optical sensing mediated by upconversion optogenetic micro-nanosystem. This system could regulate the efficient secretion of immune factors by engineered bacteria through optical manipulation. Inflammatory bowel disease and subcutaneously transplanted tumors were selected to verify the effectiveness of the system. Our results showed that the endogenous factor TGF-β1 could be controllably secreted to suppress the intestinal inflammatory response. Additionally, regulatory secretion of IFN-γ was promoted to slow the progression of B16F10 tumor.
705.

Resonance energy transfer sensitises and monitors in situ switching of LOV2-based optogenetic actuators.

blue LOV domains Background
Nat Commun, 9 Oct 2020 DOI: 10.1038/s41467-020-18816-8 Link to full text
Abstract: Engineered light-dependent switches provide uniquely powerful opportunities to investigate and control cell regulatory mechanisms. Existing tools offer high spatiotemporal resolution, reversibility and repeatability. Cellular optogenetics applications remain limited with diffusible targets as the response of the actuator is difficult to independently validate. Blue light levels commonly needed for actuation can be cytotoxic, precluding long-term experiments. We describe a simple approach overcoming these obstacles. Resonance energy transfer can be used to constitutively or dynamically modulate actuation sensitivity. This simultaneously offers on-line monitoring of light-dependent switching and precise quantification of activation-relaxation properties in intact living cells. Applying this approach to different LOV2-based switches reveals that flanking sequences can lead to relaxation times up to 11-fold faster than anticipated. In situ-measured parameter values guide the design of target-inhibiting actuation trains with minimal blue-light exposure, and context-based optimisation can increase sensitivity and experimental throughput a further 10-fold without loss of temporal precision.
706.

Injectable, photoresponsive hydrogels for delivering neuroprotective proteins enabled by metal-directed protein assembly.

green TtCBD in vitro Extracellular optogenetics
Sci Adv, 9 Oct 2020 DOI: 10.1126/sciadv.abc4824 Link to full text
Abstract: Axon regeneration constitutes a fundamental challenge for regenerative neurobiology, which necessitates the use of tailor-made biomaterials for controllable delivery of cells and biomolecules. An increasingly popular approach for creating these materials is to directly assemble engineered proteins into high-order structures, a process that often relies on sophisticated protein chemistry. Here, we present a simple approach for creating injectable, photoresponsive hydrogels via metal-directed assembly of His6-tagged proteins. The B12-dependent photoreceptor protein CarHC can complex with transition metal ions through an amino-terminal His6-tag, which can further undergo a sol-gel transition upon addition of AdoB12, leading to the formation of hydrogels with marked injectability and photodegradability. The inducible phase transitions further enabled facile encapsulation and release of cells and proteins. Injecting the Zn2+-coordinated gels decorated with leukemia inhibitory factor into injured mouse optic nerves led to prolonged cellular signaling and enhanced axon regeneration. This study illustrates a powerful strategy for designing injectable biomaterials.
707.

Steric Interactions at Gln154 in ZEITLUPE Induce Reorganization of the LOV Domain Dimer Interface.

blue LOV domains Background
bioRxiv, 7 Oct 2020 DOI: 10.1101/2020.10.05.326595 Link to full text
Abstract: Plants measure light, quality, intensity, and duration to coordinate growth and development with daily and seasonal changes in environmental conditions, however, the molecular details linking photochemistry to signal transduction remain incomplete. Two closely related Light, Oxygen, or Voltage (LOV) domain containing photoreceptor proteins ZEITLUPE (ZTL) and FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1) divergently regulate the protein stability of circadian clock and photoperiodic flowering components to mediate daily and seasonal development. Using structural approaches, we identified that mutations at the Gly46 position led to global rearrangements of the ZTL dimer interface. Specifically, introduction of G46S and G46A variants that mimic equivalent residues found in FKF1 induce a 180° rotation about the dimer interface that is coupled to ordering of N- and C-terminal signaling elements. These conformational changes hinge upon rotation of a C-terminal Gln residue analogous to that present in light-state structures of ZTL. The results presented herein, confirm a divergent signaling mechanism within ZTL that deviates from other members of the LOV superfamily and suggests that mechanisms of signal transduction in LOV proteins may be fluid across the LOV protein family.
708.

Optical control of ERK and AKT signaling promotes axon regeneration and functional recovery of PNS and CNS in Drosophila.

blue CRY2/CIB1 D. melanogaster in vivo HEK293T PC-12 Signaling cascade control
Elife, 6 Oct 2020 DOI: 10.7554/elife.57395 Link to full text
Abstract: Neuroregeneration is a dynamic process synergizing the functional outcomes of multiple signaling circuits. Channelrhodopsin-based optogenetics shows the feasibility of stimulating neural repair but does not pin down specific signaling cascades. Here, we utilized optogenetic systems, optoRaf and optoAKT, to delineate the contribution of the ERK and AKT signaling pathways to neuroregeneration in live Drosophila larvae. We showed that optoRaf or optoAKT activation not only enhanced axon regeneration in both regeneration-competent and -incompetent sensory neurons in the peripheral nervous system but also allowed temporal tuning and proper guidance of axon regrowth. Furthermore, optoRaf and optoAKT differ in their signaling kinetics during regeneration, showing a gated versus graded response, respectively. Importantly in the central nervous system, their activation promotes axon regrowth and functional recovery of the thermonociceptive behavior. We conclude that non-neuronal optogenetics target damaged neurons and signaling subcircuits, providing a novel strategy in the intervention of neural damage with improved precision.
709.

An optogenetic switch for the Set2 methyltransferase provides evidence for transcription-dependent and -independent dynamics of H3K36 methylation.

blue AsLOV2 S. cerevisiae Epigenetic modification
Genome Res, 5 Oct 2020 DOI: 10.1101/gr.264283.120 Link to full text
Abstract: Histone H3 lysine 36 methylation (H3K36me) is a conserved histone modification associated with transcription and DNA repair. Although the effects of H3K36 methylation have been studied, the genome-wide dynamics of H3K36me deposition and removal are not known. We established rapid and reversible optogenetic control for Set2, the sole H3K36 methyltransferase in yeast, by fusing the enzyme with the light-activated nuclear shuttle (LANS) domain. Light activation resulted in efficient Set2-LANS nuclear localization followed by H3K36me3 deposition in vivo, with total H3K36me3 levels correlating with RNA abundance. Although genes showed disparate levels of H3K36 methylation, relative rates of H3K36me3 accumulation were largely linear and consistent across genes, suggesting that H3K36me3 deposition occurs in a directed fashion on all transcribed genes regardless of their overall transcription frequency. Removal of H3K36me3 was highly dependent on the demethylase Rph1. However, the per-gene rate of H3K36me3 loss weakly correlated with RNA abundance and followed exponential decay, suggesting H3K36 demethylases act in a global, stochastic manner. Altogether, these data provide a detailed temporal view of H3K36 methylation and demethylation that suggests transcription-dependent and -independent mechanisms for H3K36me deposition and removal, respectively.
710.

Aptamer-Mediated Reversible Transactivation of Gene Expression by Light.

blue PAL HeLa Transgene expression
Angew Chem Int Ed Engl, 2 Oct 2020 DOI: 10.1002/anie.202009240 Link to full text
Abstract: The investigation and manipulation of cellular processes with subcellular resolution requires non-invasive tools with spatiotemporal precision and reversibility. Building on the interaction of the photoreceptor PAL with an RNA aptamer, we describe a variation of the CRISPR/dCAS9 system for light-controlled activation of gene expression. This platform significantly reduces the coding space required for genetic manipulation and provides a strong on-switch with almost no residual activity in the dark. It adds to the current set of modular building blocks for synthetic biological circuit design and is broadly applicable.
711.

Engineered Living Materials-Based Sensing and Actuation.

blue Cryptochromes Review
Front Sens, 2 Oct 2020 DOI: 10.3389/fsens.2020.586300 Link to full text
Abstract: The integration of functional synthetic materials and living biological entities has emerged as a new and powerful approach to create adaptive and functional structures with unprecedented performance and functionalities. Such hybrid structures are also called engineered living materials (ELMs). ELMs have the potential to realize many highly-desired properties, which are usually only found in biological systems, such as the abilities to self-power, self-heal, response to biosignals, and self-sustainable. Motivated by that, in recent years, researchers have started to explore the use of ELMs in many areas, among them, sensing and actuation is the area that has seen the most progress. In this short review, we briefly reviewed the important recent development in ELMs-based sensors and actuators, with a focus on their materials and structural design, new fabrication technologies, and bio-related applications. Current challenges and future directions in this field are also identified to help with future development in this emerging interdisciplinary field.
712.

Optoribogenetic control of regulatory RNA molecules.

blue PAL HEK293 Cell cycle control Transgene expression
Nat Commun, 24 Sep 2020 DOI: 10.1038/s41467-020-18673-5 Link to full text
Abstract: Short regulatory RNA molecules underpin gene expression and govern cellular state and physiology. To establish an alternative layer of control over these processes, we generated chimeric regulatory RNAs that interact reversibly and light-dependently with the light-oxygen-voltage photoreceptor PAL. By harnessing this interaction, the function of micro RNAs (miRs) and short hairpin (sh) RNAs in mammalian cells can be regulated in a spatiotemporally precise manner. The underlying strategy is generic and can be adapted to near-arbitrary target sequences. Owing to full genetic encodability, it establishes optoribogenetic control of cell state and physiology. The method stands to facilitate the non-invasive, reversible and spatiotemporally resolved study of regulatory RNAs and protein function in cellular and organismal environments.
713.

Light-Regulated allosteric switch enables temporal and subcellular control of enzyme activity.

blue VVD HEK293T HeLa Signaling cascade control
Elife, 23 Sep 2020 DOI: 10.7554/elife.60647 Link to full text
Abstract: Engineered allosteric regulation of protein activity provides significant advantages for the development of robust and broadly applicable tools. However, the application of allosteric switches in optogenetics has been scarce and suffers from critical limitations. Here, we report an optogenetic approach that utilizes an engineered Light-Regulated (LightR) allosteric switch module to achieve tight spatiotemporal control of enzymatic activity. Using the tyrosine kinase Src as a model, we demonstrate efficient regulation of the kinase and identify temporally distinct signaling responses ranging from seconds to minutes. LightR-Src off-kinetics can be tuned by modulating the LightR photoconversion cycle. A fast cycling variant enables the stimulation of transient pulses and local regulation of activity in a selected region of a cell. The design of the LightR module ensures broad applicability of the tool, as we demonstrate by achieving light-mediated regulation of Abl and bRaf kinases as well as Cre recombinase.
714.

Open-Closed Structure of Light Responsive Protein LOV2 Regulates its Molecular Interaction with Binding Partner.

blue LOV domains Background
J Phys Chem Lett, 18 Sep 2020 DOI: 10.1021/acs.jpclett.0c02252 Link to full text
Abstract: Optogenetic approaches have broad applications including regulating cell signalling and gene expression. Photo-responsive protein LOV2 and its binding partner ZDK represent an important protein caging/uncaging optogenetic system. Herein, we combine time-resolved small angle X-ray scattering (SAXS) and atomic force microscopy (AFM) to reveal different structural states of LOV2 and the light-controlled mechanism of interaction between LOV2 and ZDK. In response to blue light within a time frame of ca. 70 s, LOV2 has a significantly higher value of radius of gyration Rg (29.6± 0.3 Å vs 26.4± 0.4 Å) than its dark state, suggesting unwinding of the C-terminal Jα-helix into an open structure. Atomic force microscopy was used to characterise molecular interactions of LOV2 in open and closed states with ZDK at a single molecule level. The closed state of LOV2 enables strong binding with ZDK, characterised by 60-fold lower dissociation rate and ~1.5 times higher activation energy barrier than its open state. In combination, these data support a light-switching mechanism that is modulated by the proximity of multiple binding sites of LOV2 for ZDK.
715.

Control of Cell Migration Using Optogenetics.

blue CRY2/CIB1 HeLa
Methods Mol Biol, 17 Sep 2020 DOI: 10.1007/978-1-0716-0779-4_29 Link to full text
Abstract: Optogenetics uses light to manipulate protein localization or activity from subcellular to supra-cellular level with unprecedented spatiotemporal resolution. We used it to control the activity of the Cdc42 Rho GTPase, a major regulator of actin polymerization and cell polarity. In this chapter, we describe how to trigger and guide cell migration using optogenetics as a way to mimic EMT in an artificial yet highly controllable fashion.
716.

Optogenetic activation of heterotrimeric G-proteins by LOV2GIVe, a rationally engineered modular protein.

blue AsLOV2 HEK293T S. cerevisiae Signaling cascade control
Elife, 16 Sep 2020 DOI: 10.7554/elife.60155 Link to full text
Abstract: Heterotrimeric G-proteins are signal transducers involved in mediating the action of many natural extracellular stimuli as well as of many therapeutic agents. Non-invasive approaches to manipulate the activity of G-proteins with high precision are crucial to understand their regulation in space and time. Here, we developed LOV2GIVe, an engineered modular protein that allows the activation of heterotrimeric G-proteins with blue light. This optogenetic construct relies on a versatile design that differs from tools previously developed for similar purposes, i.e. metazoan opsins, which are light-activated GPCRs. Instead, LOV2GIVe consists of the fusion of a G-protein activating peptide derived from a non-GPCR regulator of G-proteins to a small plant protein domain, such that light uncages the G-protein activating module. Targeting LOV2GIVe to cell membranes allowed for light-dependent activation of Gi proteins in different experimental systems. In summary, LOV2GIVe expands the armamentarium and versatility of tools available to manipulate heterotrimeric G-protein activity.
717.

DMA-tudor interaction modules control the specificity of in vivo condensates.

blue CRY2/CRY2 MEF-1 NIH/3T3
bioRxiv, 16 Sep 2020 DOI: 10.1101/2020.09.15.297994 Link to full text
Abstract: Biomolecular condensation is a widespread mechanism of cellular compartmentalization. Because the ‘survival of motor neuron protein’ (SMN) is required for the formation of three different membraneless organelles (MLOs), we hypothesized that at least one region of SMN employs a unifying mechanism of condensation. Unexpectedly, we show here that SMN’s globular tudor domain was sufficient for dimerization-induced condensation in vivo, while its two intrinsically disordered regions (IDRs) were not. The condensate-forming property of the SMN tudor domain required binding to its ligand, dimethylarginine (DMA), and was shared by at least seven additional tudor domains in six different proteins. Remarkably, asymmetric versus symmetric DMA determined whether two distinct nuclear MLOs – gems and Cajal bodies – were separate or overlapping. These findings show that the combination of a tudor domain bound to its DMA ligand – DMA-tudor – represents a versatile yet specific interaction module that regulates MLO assembly and defines their composition.
718.

Nucleated transcriptional condensates amplify gene expression.

blue CRY2olig NIH/3T3 Endogenous gene expression Organelle manipulation
Nat Cell Biol, 14 Sep 2020 DOI: 10.1038/s41556-020-00578-6 Link to full text
Abstract: Membraneless organelles or condensates form through liquid-liquid phase separation1-4, which is thought to underlie gene transcription through condensation of the large-scale nucleolus5-7 or in smaller assemblies known as transcriptional condensates8-11. Transcriptional condensates have been hypothesized to phase separate at particular genomic loci and locally promote the biomolecular interactions underlying gene expression. However, there have been few quantitative biophysical tests of this model in living cells, and phase separation has not yet been directly linked with dynamic transcriptional outputs12,13. Here, we apply an optogenetic approach to show that FET-family transcriptional regulators exhibit a strong tendency to phase separate within living cells, a process that can drive localized RNA transcription. We find that TAF15 has a unique charge distribution among the FET family members that enhances its interactions with the C-terminal domain of RNA polymerase II. Nascent C-terminal domain clusters at primed genomic loci lower the energetic barrier for nucleation of TAF15 condensates, which in turn further recruit RNA polymerase II to drive transcriptional output. These results suggest that positive feedback between interacting transcriptional components drives localized phase separation to amplify gene expression.
719.

Optogenetically Controlled TrkA Activity Improves the Regenerative Capacity of Hair-Follicle-Derived Stem Cells to Differentiate into Neurons and Glia.

blue VfAU1-LOV hair-follicle-derived stem cells Cell differentiation
Adv Biosyst, 13 Sep 2020 DOI: 10.1002/adbi.202000134 Link to full text
Abstract: Hair-follicle-derived stem cells (HSCs) originating from the bulge region of the mouse vibrissa hair follicle are able to differentiate into neuronal and glial lineage cells. The tropomyosin receptor kinase A (TrkA) receptor that is expressed on these cells plays key roles in mediating the survival and differentiation of neural progenitors as well as in the regulation of the growth and regeneration of different neural systems. In this study, the OptoTrkA system is introduced, which is able to stimulate TrkA activity via blue-light illumination in HSCs. This allows to determine whether TrkA signaling is capable of influencing the proliferation, migration, and neural differentiation of these somatic stem cells. It is found that OptoTrkA is able to activate downstream molecules such as ERK and AKT with blue-light illumination, and subsequently able to terminate this kinase activity in the dark. HSCs with OptoTrkA activity show an increased ability for proliferation and migration and also exhibited accelerated neuronal and glial cell differentiation. These findings suggest that the precise control of TrkA activity using optogenetic tools is a viable strategy for the regeneration of neurons from HSCs, and also provides a novel insight into the clinical application of optogenetic tools in cell-transplantation therapy.
720.

Activation of Cdc42 GTPase upon CRY2-Induced Cortical Recruitment Is Antagonized by GAPs in Fission Yeast.

blue CRY2/CIB1 S. pombe
Cells, 12 Sep 2020 DOI: 10.3390/cells9092089 Link to full text
Abstract: The small GTPase Cdc42 is critical for cell polarization in eukaryotic cells. In rod-shaped fission yeast Schizosaccharomyces pombe cells, active GTP-bound Cdc42 promotes polarized growth at cell poles, while inactive Cdc42-GDP localizes ubiquitously also along cell sides. Zones of Cdc42 activity are maintained by positive feedback amplification involving the formation of a complex between Cdc42-GTP, the scaffold Scd2, and the guanine nucleotide exchange factor (GEF) Scd1, which promotes the activation of more Cdc42. Here, we use the CRY2-CIB1 optogenetic system to recruit and cluster a cytosolic Cdc42 variant at the plasma membrane and show that this leads to its moderate activation also on cell sides. Surprisingly, Scd2, which binds Cdc42-GTP, is still recruited to CRY2-Cdc42 clusters at cell sides in individual deletion of the GEFs Scd1 or Gef1. We show that activated Cdc42 clusters at cell sides are able to recruit Scd1, dependent on the scaffold Scd2. However, Cdc42 activity is not amplified by positive feedback and does not lead to morphogenetic changes, due to antagonistic activity of the GTPase activating protein Rga4. Thus, the cell architecture is robust to moderate activation of Cdc42 at cell sides.
721.

Optogenetic TDP-43 nucleation induces persistent insoluble species and progressive motor dysfunction in vivo.

blue CRY2olig D. melanogaster in vivo Organelle manipulation
Neurobiol Dis, 11 Sep 2020 DOI: 10.1016/j.nbd.2020.105078 Link to full text
Abstract: TDP-43 is a predominantly nuclear DNA/RNA binding protein that is often mislocalized into insoluble cytoplasmic inclusions in post-mortem patient tissue in a variety of neurodegenerative disorders, most notably, Amyotrophic Lateral Sclerosis (ALS), a fatal and progressive neuromuscular disorder. The underlying causes of TDP-43 proteinopathies remain unclear, but recent studies indicate the formation of these protein assemblies is driven by aberrant phase transitions of RNA deficient TDP-43. Technical limitations have prevented our ability to understand how TDP-43 proteinopathy relates to disease pathogenesis. Current animal models of TDP-43 proteinopathy often rely on overexpression of wild-type TDP-43 to non-physiological levels that may initiate neurotoxicity through nuclear gain of function mechanisms, or by the expression of disease-causing mutations found in only a fraction of ALS patients. New technologies allowing for light-responsive control of subcellular protein crowding provide a promising approach to drive intracellular protein aggregation, as we have previously demonstrated in vitro. Here we present a model for the optogenetic induction of TDP-43 aggregation in Drosophila that recapitulates key biochemical features seen in patient pathology, most notably light-inducible persistent insoluble species and progressive motor dysfunction. These data describe a photokinetic in vivo model that could be as a future platform to identify novel genetic and pharmacological modifiers of diseases associated with TDP-43 neuropathology.
722.

Optogenetics and biosensors set the stage for metabolic cybergenetics.

blue green near-infrared red UV violet BLUF domains Cryptochromes Cyanobacteriochromes LOV domains PAL Phytochromes UV receptors Review
Curr Opin Biotechnol, 11 Sep 2020 DOI: 10.1016/j.copbio.2020.07.012 Link to full text
Abstract: Cybergenetic systems use computer interfaces to enable feed-back controls over biological processes in real time. The complex and dynamic nature of cellular metabolism makes cybergenetics attractive for controlling engineered metabolic pathways in microbial fermentations. Cybergenetics would not only create new avenues of research into cellular metabolism, it would also enable unprecedented strategies for pathway optimization and bioreactor operation and automation. Implementation of metabolic cybergenetics, however, will require new capabilities from actuators, biosensors, and control algorithms. The recent application of optogenetics in metabolic engineering, the expanding role of genetically encoded biosensors in strain development, and continued progress in control algorithms for biological processes suggest that this technology will become available in the not so distant future.
723.

Morphogenesis: Guiding Embryonic Development with Light.

blue LOV domains Review
Curr Biol, 7 Sep 2020 DOI: 10.1016/j.cub.2020.07.048 Link to full text
Abstract: Embryonic development is controlled by dynamic signaling systems that are translated into patterns of gene expression. Optogenetics has now been used to rescue genetic loss of Drosophila terminal patterning, bringing us a step closer to reconstruct morphogenesis synthetically.
724.

Optogenetic control of the lac operon for bacterial chemical and protein production.

blue YtvA E. coli Transgene expression Endogenous gene expression
Nat Chem Biol, 7 Sep 2020 DOI: 10.1038/s41589-020-0639-1 Link to full text
Abstract: Control of the lac operon with isopropyl β-D-1-thiogalactopyranoside (IPTG) has been used to regulate gene expression in Escherichia coli for countless applications, including metabolic engineering and recombinant protein production. However, optogenetics offers unique capabilities, such as easy tunability, reversibility, dynamic induction strength and spatial control, that are difficult to obtain with chemical inducers. We have developed a series of circuits for optogenetic regulation of the lac operon, which we call OptoLAC, to control gene expression from various IPTG-inducible promoters using only blue light. Applying them to metabolic engineering improves mevalonate and isobutanol production by 24% and 27% respectively, compared to IPTG induction, in light-controlled fermentations scalable to at least two-litre bioreactors. Furthermore, OptoLAC circuits enable control of recombinant protein production, reaching yields comparable to IPTG induction but with easier tunability of expression. OptoLAC circuits are potentially useful to confer light control over other cell functions originally designed to be IPTG-inducible.
725.

Light control of RTK activity: from technology development to translational research.

blue cyan green red Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Chem Sci, 7 Sep 2020 DOI: 10.1039/d0sc03570j Link to full text
Abstract: Inhibition of receptor tyrosine kinases (RTKs) by small molecule inhibitors and monoclonal antibodies is used to treat cancer. Conversely, activation of RTKs with their ligands, including growth factors and insulin, is used to treat diabetes and neurodegeneration. However, conventional therapies that rely on injection of RTK inhibitors or activators do not provide spatiotemporal control over RTK signaling, which results in diminished efficiency and side effects. Recently, a number of optogenetic and optochemical approaches have been developed that allow RTK inhibition or activation in cells and in vivo with light. Light irradiation can control RTK signaling non-invasively, in a dosed manner, with high spatio-temporal precision, and without the side effects of conventional treatments. Here we provide an update on the current state of the art of optogenetic and optochemical RTK technologies and the prospects of their use in translational studies and therapy.
Submit a new publication to our database