Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 901 - 925 of 1700 results
901.

Mapping the proximity interaction network of the Rho-family GTPases reveals signalling pathways and regulatory mechanisms.

blue AsLOV2 HeLa Signaling cascade control Control of cytoskeleton / cell motility / cell shape
Nat Cell Biol, 23 Dec 2019 DOI: 10.1038/s41556-019-0438-7 Link to full text
Abstract: Guanine nucleotide exchange factors (RhoGEFs) and GTPase-activating proteins (RhoGAPs) coordinate the activation state of the Rho family of GTPases for binding to effectors. Here, we exploited proximity-dependent biotinylation to systematically define the Rho family proximity interaction network from 28 baits to produce 9,939 high-confidence proximity interactions in two cell lines. Exploiting the nucleotide states of Rho GTPases, we revealed the landscape of interactions with RhoGEFs and RhoGAPs. We systematically defined effectors of Rho proteins to reveal candidates for classical and atypical Rho proteins. We used optogenetics to demonstrate that KIAA0355 (termed GARRE here) is a RAC1 interactor. A functional screen of RHOG candidate effectors identified PLEKHG3 as a promoter of Rac-mediated membrane ruffling downstream of RHOG. We identified that active RHOA binds the kinase SLK in Drosophila and mammalian cells to promote Ezrin-Radixin-Moesin phosphorylation. Our proximity interactions data pave the way for dissecting additional Rho signalling pathways, and the approaches described here are applicable to the Ras family.
902.

Strategies for Engineering and Rewiring Kinase Regulation.

blue cyan red Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Trends Biochem Sci, 19 Dec 2019 DOI: 10.1016/j.tibs.2019.11.005 Link to full text
Abstract: Eukaryotic protein kinases (EPKs) catalyze the transfer of a phosphate group onto another protein in response to appropriate regulatory cues. In doing so, they provide a primary means for cellular information transfer. Consequently, EPKs play crucial roles in cell differentiation and cell-cycle progression, and kinase dysregulation is associated with numerous disease phenotypes including cancer. Nonnative cues for synthetically regulating kinases are thus much sought after, both for dissecting cell signaling pathways and for pharmaceutical development. In recent years advances in protein engineering and sequence analysis have led to new approaches for manipulating kinase activity, localization, and in some instances specificity. These tools have revealed fundamental principles of intracellular signaling and suggest paths forward for the design of therapeutic allosteric kinase regulators.
903.

Optogenetic approaches to investigate spatiotemporal signaling during development.

blue cyan near-infrared red UV Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Curr Top Dev Biol, 18 Dec 2019 DOI: 10.1016/bs.ctdb.2019.11.009 Link to full text
Abstract: Embryogenesis is coordinated by signaling pathways that pattern the developing organism. Many aspects of this process are not fully understood, including how signaling molecules spread through embryonic tissues, how signaling amplitude and dynamics are decoded, and how multiple signaling pathways cooperate to pattern the body plan. Optogenetic approaches can be used to address these questions by providing precise experimental control over a variety of biological processes. Here, we review how these strategies have provided new insights into developmental signaling and discuss how they could contribute to future investigations.
904.

SapTrap Assembly of Caenorhabditis elegans MosSCI Transgene Vectors.

blue TULIP C. elegans in vivo
G3 (Bethesda), 17 Dec 2019 DOI: 10.1534/g3.119.400822 Link to full text
Abstract: The Mos1-mediated Single-Copy Insertion (MosSCI) method is widely used to establish stable Caenorhabditis elegans transgenic strains. Cloning MosSCI targeting plasmids can be cumbersome because it requires assembling multiple genetic elements including a promoter, a 3'UTR and gene fragments. Recently, Schwartz and Jorgensen developed the SapTrap method for the one-step assembly of plasmids containing components of the CRISPR/Cas9 system for C. elegans Here, we report on the adaptation of the SapTrap method for the efficient and modular assembly of a promoter, 3'UTR and either 2 or 3 gene fragments in a MosSCI targeting vector in a single reaction. We generated a toolkit that includes several fluorescent tags, components of the ePDZ/LOV optogenetic system and regulatory elements that control gene expression in the C. elegans germline. As a proof of principle, we generated a collection of strains that fluorescently label the endoplasmic reticulum and mitochondria in the hermaphrodite germline and that enable the light-stimulated recruitment of mitochondria to centrosomes in the one-cell worm embryo. The method described here offers a flexible and efficient method for assembly of custom MosSCI targeting vectors.
905.

Engineered BRET-Based Biologic Light Sources Enable Spatiotemporal Control over Diverse Optogenetic Systems.

blue CRY2/CIB1 FKF1/GI iLID Magnets HEK293T HeLa in vitro Extracellular optogenetics
ACS Synth Biol, 17 Dec 2019 DOI: 10.1021/acssynbio.9b00277 Link to full text
Abstract: Light-inducible optogenetic systems offer precise spatiotemporal control over a myriad of biologic processes. Unfortunately, current systems are inherently limited by their dependence on external light sources for their activation. Further, the utility of laser/LED-based illumination strategies are often constrained by the need for invasive surgical procedures to deliver such devices and local heat production, photobleaching and phototoxicity that compromises cell and tissue viability. To overcome these limitations, we developed a novel BRET-activated optogenetics (BEACON) system that employs biologic light to control optogenetic tools. BEACON is driven by self-illuminating bioluminescent-fluorescent proteins that generate "spectrally tuned" biologic light via bioluminescence resonance energy transfer (BRET). Notably, BEACON robustly activates a variety of commonly used optogenetic systems in a spatially restricted fashion, and at physiologically relevant time scales, to levels that are achieved by conventional laser/LED light sources.
906.

Primary Cilia Signaling Promotes Axonal Tract Development and Is Disrupted in Joubert Syndrome-Related Disorders Models.

blue bPAC (BlaC) CRY2/CIB1 primary mouse deep cerebellar nuclei neurons Control of cytoskeleton / cell motility / cell shape Immediate control of second messengers
Dev Cell, 16 Dec 2019 DOI: 10.1016/j.devcel.2019.11.005 Link to full text
Abstract: Appropriate axonal growth and connectivity are essential for functional wiring of the brain. Joubert syndrome-related disorders (JSRD), a group of ciliopathies in which mutations disrupt primary cilia function, are characterized by axonal tract malformations. However, little is known about how cilia-driven signaling regulates axonal growth and connectivity. We demonstrate that the deletion of related JSRD genes, Arl13b and Inpp5e, in projection neurons leads to de-fasciculated and misoriented axonal tracts. Arl13b deletion disrupts the function of its downstream effector, Inpp5e, and deregulates ciliary-PI3K/AKT signaling. Chemogenetic activation of ciliary GPCR signaling and cilia-specific optogenetic modulation of downstream second messenger cascades (PI3K, AKT, and AC3) commonly regulated by ciliary signaling receptors induce rapid changes in axonal dynamics. Further, Arl13b deletion leads to changes in transcriptional landscape associated with dysregulated PI3K/AKT signaling. These data suggest that ciliary signaling acts to modulate axonal connectivity and that impaired primary cilia signaling underlies axonal tract defects in JSRD.
907.

A time-dependent role for the transcription factor CREB in neuronal allocation to an engram underlying a fear memory revealed using a novel in vivo optogenetic tool to modulate CREB function.

blue PYP HEK293T mouse in vivo primary mouse hippocampal neurons Endogenous gene expression
Neuropsychopharmacology, 14 Dec 2019 DOI: 10.1038/s41386-019-0588-0 Link to full text
Abstract: The internal representation of an experience is thought to be encoded by long-lasting physical changes to the brain ("engrams") (Josselyn et al. Nat Rev Neurosci 16:521-534, 2015; Josselyn et al. J Neurosci 37:4647-4657, 2017; Schacter. 2001; Tonegawa et al. Neuron 87:918-931, 2015). Previously, we (Han et al. Science 316:457-460, 2007) and others (Zhou et al. Nat Neurosci 12:1438-1443, 2009) showed within the lateral amygdala (LA), a region critical for auditory conditioned fear, eligible neurons compete against one other for allocation to an engram. Neurons with relatively higher function of the transcription factor CREB were more likely to be allocated to the engram. In these studies, though, CREB function was artificially increased for several days before training. Precisely when increased CREB function is important for allocation remains an unanswered question. Here, we took advantage of a novel optogenetic tool (opto-DN-CREB) (Ali et al. Chem Biol 22:1531-1539, 2015) to gain spatial and temporal control of CREB function in freely behaving mice. We found increasing CREB function in a small, random population of LA principal neurons in the minutes-hours, but not 24 h, before training was sufficient to enhance memory, likely because these neurons were preferentially allocated to the underlying engram. However, similarly increasing CREB activity in a small population of random LA neurons immediately after training disrupted subsequent memory retrieval, likely by disrupting the precise spatial and temporal patterns of offline post-training neuronal activity and/or function required for consolidation. These findings reveal the importance of the timing of CREB activity in regulating allocation and subsequent memory retrieval, and further, highlight the potential of optogenetic approaches to control protein function with temporal specificity in behaving animals.
908.

Focusing light inside live tissue using reversibly switchable bacterial phytochrome as a genetically encoded photochromic guide star.

red DrBphP mouse in vivo primary mouse hippocampal neurons U-87 MG Transgene expression
Sci Adv, 11 Dec 2019 DOI: 10.1126/sciadv.aay1211 Link to full text
Abstract: Focusing light deep by engineering wavefronts toward guide stars inside scattering media has potential biomedical applications in imaging, manipulation, stimulation, and therapy. However, the lack of endogenous guide stars in biological tissue hinders its translations to in vivo applications. Here, we use a reversibly switchable bacterial phytochrome protein as a genetically encoded photochromic guide star (GePGS) in living tissue to tag photons at targeted locations, achieving light focusing inside the tissue by wavefront shaping. As bacterial phytochrome-based GePGS absorbs light differently upon far-red and near-infrared illumination, a large dynamic absorption contrast can be created to tag photons inside tissue. By modulating the GePGS at a distinctive frequency, we suppressed the competition between GePGS and tissue motions and formed tight foci inside mouse tumors in vivo and acute mouse brain tissue, thus improving light delivery efficiency and specificity. Spectral multiplexing of GePGS proteins with different colors is an attractive possibility.
909.

Directed evolution improves the catalytic efficiency of TEV protease.

blue AsLOV2 CRY2/CIB1 HEK293T rat cortical neurons S. cerevisiae Endogenous gene expression
Nat Methods, 9 Dec 2019 DOI: 10.1038/s41592-019-0665-7 Link to full text
Abstract: Tobacco etch virus protease (TEV) is one of the most widely used proteases in biotechnology because of its exquisite sequence specificity. A limitation, however, is its slow catalytic rate. We developed a generalizable yeast-based platform for directed evolution of protease catalytic properties. Protease activity is read out via proteolytic release of a membrane-anchored transcription factor, and we temporally regulate access to TEV's cleavage substrate using a photosensory LOV domain. By gradually decreasing light exposure time, we enriched faster variants of TEV over multiple rounds of selection. Our TEV-S153N mutant (uTEV1Δ), when incorporated into the calcium integrator FLARE, improved the signal/background ratio by 27-fold, and enabled recording of neuronal activity in culture with 60-s temporal resolution. Given the widespread use of TEV in biotechnology, both our evolved TEV mutants and the directed-evolution platform used to generate them could be beneficial across a wide range of applications.
910.

Blue light-triggered optogenetic system for treating uveal melanoma.

blue CRY2/CIB1 B16-F0 mouse in vivo Signaling cascade control
Oncogene, 6 Dec 2019 DOI: 10.1038/s41388-019-1119-5 Link to full text
Abstract: Uveal melanoma is the most common intraocular primary malignancy in adults and has been considered a fatal disease for decades. Optogenetics is an emerging technique that can control the activation of signaling components via irradiation with visible light. The clinical translation of optogenetics has been limited because of the need for surgical implantation of electrodes and relatively shallow tissue penetration. As visible light easily penetrates the eyes, we hypothesized that an optogenetics approach can be an effective treatment of uveal melanoma without surgery. In this study, we evaluated the feasibility of this strategy by using a genetically encoded optogenetic system based on reversible blue light-induced binding pairs between Fas-CIB1-EGFP and CRY2-mCherry-FADD. Subretinal injection of B16 cells was performed to create a uveal melanoma model. Plasmids pairs were co-transfected into B16 cells. We found that blue light irradiation dynamically controlled the translocation of FADD to Fas on the plasma membrane and induced the apoptosis of B16 cells transfected with the optogenetic nanosystem in vitro. Moreover, the blue light-controlled optogenetic nanosystem suppressed the growth of uveal melanoma in vivo by inducing apoptosis. These results suggest that light-controlled optogenetic therapy can be used as a potential novel therapeutic strategy for uveal melanoma.
911.

Multiple-site diversification of regulatory sequences enables inter-species operability of genetic devices.

green CcaS/CcaR P. putida
ACS Synth Biol, 3 Dec 2019 DOI: 10.1021/acssynbio.9b00375 Link to full text
Abstract: The features of the light-responsive cyanobacterial CcaSR regulatory module that determine interoperability of this optogenetic device between Escherichia coli and Pseudomonas putida have been examined. For this, all structural parts (i.e. ho1 and pcyA genes for synthesis of phycocyanobilin, the ccaS/ccaR system from Synechocystis and its cognate downstream promoter) were maintained but their expression levels and stoichiometry diversified by [i] reassembling them together in a single broad host range, standardized vector and [ii] subjecting the non-coding regulatory sequences to multiple cycles of directed evolution with random genomic mutations (DIvERGE), a recombineering method that intensifies mutation rates within discrete DNA segments. Once passed to P. putida, various clones displayed a wide dynamic range, insignificant leakiness and excellent capacity in response to green light. Inspection of the evolutionary intermediates pinpointed translational control as the main bottleneck for interoperability and suggested a general approach for easing the exchange of genetic cargoes between different species i.e. optimization of relative expression levels and upturning of subcomplex stoichiometry.
912.

Optimizing photoswitchable MEK.

blue cyan iLID pdDronpa1 D. melanogaster in vivo zebrafish in vivo Signaling cascade control
Proc Natl Acad Sci USA, 3 Dec 2019 DOI: 10.1073/pnas.1912320116 Link to full text
Abstract: Optogenetic approaches are transforming quantitative studies of cell-signaling systems. A recently developed photoswitchable mitogen-activated protein kinase kinase 1 (MEK1) enzyme (psMEK) short-circuits the highly conserved Extracellular Signal-Regulated Kinase (ERK)-signaling cascade at the most proximal step of effector kinase activation. However, since this optogenetic tool relies on phosphorylation-mimicking substitutions in the activation loop of MEK, its catalytic activity is predicted to be substantially lower than that of wild-type MEK that has been phosphorylated at these residues. Here, we present evidence that psMEK indeed has suboptimal functionality in vivo and propose a strategy to circumvent this limitation by harnessing gain-of-function, destabilizing mutations in MEK. Specifically, we demonstrate that combining phosphomimetic mutations with additional mutations in MEK, chosen for their activating potential, restores maximal kinase activity in vitro. We establish that this modification can be tuned by the choice of the destabilizing mutation and does not interfere with reversible activation of psMEK in vivo in both Drosophila and zebrafish. To illustrate the types of perturbations enabled by optimized psMEK, we use it to deliver pulses of ERK activation during zebrafish embryogenesis, revealing rheostat-like responses of an ERK-dependent morphogenetic event.
913.

Deconstructing and repurposing the light-regulated interplay between Arabidopsis phytochromes and interacting factors.

red PhyB/PIF3 PhyB/PIF6 CHO-K1 in vitro NIH/3T3
Commun Biol, 2 Dec 2019 DOI: 10.1038/s42003-019-0687-9 Link to full text
Abstract: Phytochrome photoreceptors mediate adaptive responses of plants to red and far-red light. These responses generally entail light-regulated association between phytochromes and other proteins, among them the phytochrome-interacting factors (PIF). The interaction with Arabidopsis thaliana phytochrome B (AtPhyB) localizes to the bipartite APB motif of the A. thaliana PIFs (AtPIF). To address a dearth of quantitative interaction data, we construct and analyze numerous AtPIF3/6 variants. Red-light-activated binding is predominantly mediated by the APB N-terminus, whereas the C-terminus modulates binding and underlies the differential affinity of AtPIF3 and AtPIF6. We identify AtPIF variants of reduced size, monomeric or homodimeric state, and with AtPhyB affinities between 10 and 700 nM. Optogenetically deployed in mammalian cells, the AtPIF variants drive light-regulated gene expression and membrane recruitment, in certain cases reducing basal activity and enhancing regulatory response. Moreover, our results provide hitherto unavailable quantitative insight into the AtPhyB:AtPIF interaction underpinning vital light-dependent responses in plants.
914.

A yeast optogenetic toolkit (yOTK) for gene expression control in Saccharomyces cerevisiae.

blue CRY2/CIB1 S. cerevisiae
Biotechnol Bioeng, 2 Dec 2019 DOI: 10.1002/bit.27234 Link to full text
Abstract: Optogenetic tools for controlling gene expression are ideal for tuning synthetic biological networks due to the exquisite spatiotemporal control available with light. Here we develop an optogenetic system for gene expression control integrated with an existing yeast toolkit allowing for rapid, modular assembly of light-controlled circuits in the important chassis organism Saccharomyces cerevisiae. We reconstitute activity of a split synthetic zinc-finger transcription factor (TF) using light-induced dimerization mediated by the proteins CRY2 and CIB1. We optimize function of this split TF and demonstrate the utility of the toolkit workflow by assembling cassettes expressing the TF activation domain and DNA-binding domain at different levels. Utilizing this TF and a synthetic promoter we demonstrate that light-intensity and duty-cycle can be used to modulate gene expression over the range currently available from natural yeast promoters. This work allows for rapid generation and prototyping of optogenetic circuits to control gene expression in Saccharomyces cerevisiae. This article is protected by copyright. All rights reserved.
915.

The importance of cell-cell interaction dynamics in bottom-up tissue engineering: Concepts of colloidal self-assembly in the fabrication of multicellular architectures.

blue iLID Magnets MDA-MB-231 Control of cell-cell / cell-material interactions Extracellular optogenetics
Nano Lett, 21 Nov 2019 DOI: 10.1021/acs.nanolett.9b04160 Link to full text
Abstract: Building tissue from cells as the basic building block based on principles of self-assembly is a challenging and promising approach. Understanding how far principles of self-assembly and self-sorting known for colloidal particles apply to cells remains unanswered. In this study, we demonstrate that not just controlling the cell-cell interactions but also their dynamics is a crucial factor that determines the formed multicellular structure, using photoswitchable interactions between cells that are activated with blue light and reverse in the dark. Tuning dynamics of the cell-cell interactions by pulsed light activation, results in multicellular architectures with different sizes and shapes. When the interactions between cells are dynamic compact and round multicellular clusters under thermodynamic control form, while otherwise branched and lose aggregates under kinetic control assemble. These structures parallel what is known for colloidal assemblies under reaction and diffusion limited cluster aggregation, respectively. Similarly, dynamic interactions between cells are essential for cells to self-sort into distinct groups. Using four different cell types, which expressed two orthogonal cell-cell interaction pairs, the cells sorted into two separate assemblies. Bringing concepts of colloidal self-assembly to bottom-up tissue engineering provides a new theoretical framework and will help in the design of more predictable tissue-like structures.
916.

Visualization of a blue light transmission area in living animals using light-induced nuclear translocation of fluorescent proteins.

blue AsLOV2 HEK293 mouse in vivo
Biochem Biophys Res Commun, 19 Nov 2019 DOI: 10.1016/j.bbrc.2019.11.023 Link to full text
Abstract: Optical manipulations are widely used to analyze neuronal functions in vivo. Blue light is frequently used to activate channelrhodopsins or LOV domains, although the degrees of its absorption and scattering are higher than those of longer wavelength light. High spatial resolution of optical manipulation is easily achieved in vitro, while the light is unevenly scattered and absorbed in tissues due to many factors. It is difficult to spatially measure a blue light transmission area in vivo. Here, we propose a genetic method to visualize blue light transmission in the brain and other organs using light-induced nuclear translocation of fluorescent proteins with a LOV domain. A light-inducible nuclear localization signal (LINuS) consists of a LOV2 domain fused with a nuclear localization signal (NLS). We confirmed that blue light illumination induced reversible translocation of NES-tdTomato-LINuS from the cytosol to the nucleus within 30 min in HEK293 cells. By employing a PHP.eb capsid that can penetrate the blood-brain barrier, retro-orbital sinus injection of adeno-associated virus (AAV) vectors induced scattered expression of nuclear export signal (NES)-tdTomato-LINuS in the brain. We confirmed that 30-min transcranial blue light illumination induced nuclear translocation of NES-tdTomato-LINuS in the cortex, the hippocampus, and even the paraventricular nucleus of the thalamus. We also found that mice exposed to blue light in a shaved abdominal area exhibited a substantial increase in nuclear translocation in the ventral surface lobe of the liver. These results provide a simple way to obtain useful information on light transmission in tissues without any transgenic animals or skillful procedures.
917.

Optogenetic control of cofilin and αTAT in living cells using Z-lock.

blue LOVTRAP HEK293T HeLa MTLn3 Control of cytoskeleton / cell motility / cell shape
Nat Chem Biol, 18 Nov 2019 DOI: 10.1038/s41589-019-0405-4 Link to full text
Abstract: Here we introduce Z-lock, an optogenetic approach for reversible, light-controlled steric inhibition of protein active sites. The light oxygen voltage (LOV) domain and Zdk, a small protein that binds LOV selectively in the dark, are appended to the protein of interest where they sterically block the active site. Irradiation causes LOV to change conformation and release Zdk, exposing the active site. Computer-assisted protein design was used to optimize linkers and Zdk-LOV affinity, for both effective binding in the dark, and effective light-induced release of the intramolecular interaction. Z-lock cofilin was shown to have actin severing ability in vitro, and in living cancer cells it produced protrusions and invadopodia. An active fragment of the tubulin acetylase αTAT was similarly modified and shown to acetylate tubulin on irradiation.
918.

Elucidating cyclic AMP signaling in subcellular domains with optogenetic tools and fluorescent biosensors.

blue red violet BLUF domains Cryptochromes Cyanobacteriochromes LOV domains Phytochromes Review
Biochem Soc Trans, 14 Nov 2019 DOI: 10.1042/bst20190246 Link to full text
Abstract: The second messenger 3',5'-cyclic nucleoside adenosine monophosphate (cAMP) plays a key role in signal transduction across prokaryotes and eukaryotes. Cyclic AMP signaling is compartmentalized into microdomains to fulfil specific functions. To define the function of cAMP within these microdomains, signaling needs to be analyzed with spatio-temporal precision. To this end, optogenetic approaches and genetically encoded fluorescent biosensors are particularly well suited. Synthesis and hydrolysis of cAMP can be directly manipulated by photoactivated adenylyl cyclases (PACs) and light-regulated phosphodiesterases (PDEs), respectively. In addition, many biosensors have been designed to spatially and temporarily resolve cAMP dynamics in the cell. This review provides an overview about optogenetic tools and biosensors to shed light on the subcellular organization of cAMP signaling.
919.

Using Tools from Optogenetics to Create Light-Responsive Biomaterials: LOVTRAP-PEG Hydrogels for Dynamic Peptide Immobilization.

blue LOVTRAP in vitro Extracellular optogenetics
Ann Biomed Eng, 13 Nov 2019 DOI: 10.1007/s10439-019-02407-w Link to full text
Abstract: Hydrogel materials have become a versatile platform for in vitro cell culture due to their ability to simulate many aspects of native tissues. However, precise spatiotemporal presentation of peptides and other biomolecules has remained challenging. Here we report the use of light-sensing proteins (LSPs), more commonly used in optogenetics research, as light-activated reversible binding sites within synthetic poly(ethylene glycol) (PEG) hydrogels. We used LOVTRAP, a two component LSP system consisting of LOV2, a protein domain that can cycle reversibly between "light" and "dark" conformations in response to blue light, and a z-affibody, Zdark (Zdk), that binds the dark state of LOV2, to spatiotemporally control the presentation of a recombinant protein within PEG hydrogels. By immobilizing LOV2 within PEG gels, we were able to capture a recombinant fluorescent protein (used as a model biomolecule) containing a Zdk domain, and then release the Zdk fusion protein using blue light. Zdk was removed from LOV2-containing PEG gels using focused blue light, resulting in a 30% reduction of fluorescence compared to unexposed regions of the gel. Additionally, the reversible binding capability of LOVTRAP was observed in our system, enabling our LOV2 gels to capture and release Zdk at least three times. By adding a Zdk domain to a recombinant peptide or protein, dynamic, spatially constrained displays of non-diffusing ligands within a PEG gel could feasibly be achieved using LOV2.
920.

Designing protein structures and complexes with the molecular modeling program Rosetta.

blue LOV domains Review
J Biol Chem, 7 Nov 2019 DOI: 10.1074/jbc.aw119.008144 Link to full text
Abstract: Proteins perform an amazingly diverse set of functions in all aspects of life. Critical to the function of many proteins are the highly specific three-dimensional structures they adopt. For this reason, there is strong interest in learning how to rationally design proteins that adopt user-defined structures. Over the last 25-years there has been significant progress in the field of computational protein design as rotamer-based sequence optimization protocols have enabled accurate design of protein tertiary and quaternary structure. In this award article I will summarize how the molecular modeling program Rosetta is used to design new protein structures and describe how we have taken advantage of this capability to create proteins that have important applications in research and medicine.  I will highlight three protein design stories: the use of protein interface design to create therapeutic bispecific antibodies, the engineering of light-inducible proteins that can be used to recruit proteins to specific locations in the cell, and the de novo design of new protein structures from pieces of naturally occurring proteins.
921.

Structural Basis of Design and Engineering for Advanced Plant Optogenetics.

blue green red UV BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Trends Plant Sci, 4 Nov 2019 DOI: 10.1016/j.tplants.2019.10.002 Link to full text
Abstract: In optogenetics, light-sensitive proteins are specifically expressed in target cells and light is used to precisely control the activity of these proteins at high spatiotemporal resolution. Optogenetics initially used naturally occurring photoreceptors to control neural circuits, but has expanded to include carefully designed and engineered photoreceptors. Several optogenetic constructs are based on plant photoreceptors, but their application to plant systems has been limited. Here, we present perspectives on the development of plant optogenetics, considering different levels of design complexity. We discuss how general principles of light-driven signal transduction can be coupled with approaches for engineering protein folding to develop novel optogenetic tools. Finally, we explore how the use of computation, networks, circular permutation, and directed evolution could enrich optogenetics.
922.

Manipulating the Patterns of Mechanical Forces That Shape Multicellular Tissues.

blue Cryptochromes LOV domains Review
Physiology (Bethesda), 1 Nov 2019 DOI: 10.1152/physiol.00018.2019 Link to full text
Abstract: During embryonic development, spatial and temporal patterns of mechanical forces help to transform unstructured groups of cells into complex, functional tissue architectures. Here, we review emerging approaches to manipulate these patterns of forces to investigate the mechanical mechanisms that shape multicellular tissues, with a focus on recent experimental studies of epithelial tissue sheets in the embryo of the model organism Drosophila melanogaster.
923.

Optogenetic inhibition of Delta reveals digital Notch signaling output during tissue differentiation.

blue CRY2/CIB1 CRY2olig D. melanogaster in vivo Signaling cascade control
EMBO Rep, 31 Oct 2019 DOI: 10.15252/embr.201947999 Link to full text
Abstract: Spatio-temporal regulation of signalling pathways plays a key role in generating diverse responses during the development of multicellular organisms. The role of signal dynamics in transferring signalling information in vivo is incompletely understood. Here we employ genome engineering in Drosophila melanogaster to generate a functional optogenetic allele of the Notch ligand Delta (opto-Delta), which replaces both copies of the endogenous wild type locus. Using clonal analysis, we show that optogenetic activation blocks Notch activation through cis-inhibition in signal-receiving cells. Signal perturbation in combination with quantitative analysis of a live transcriptional reporter of Notch pathway activity reveals differential tissue- and cell-scale regulatory modes. While at the tissue-level the duration of Notch signalling determines the probability with which a cellular response will occur, in individual cells Notch activation acts through a switch-like mechanism. Thus, time confers regulatory properties to Notch signalling that exhibit integrative digital behaviours during tissue differentiation.
924.

Single-Molecule Analysis and Engineering of DNA Motors.

blue cyan near-infrared red UV Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Chem Rev, 29 Oct 2019 DOI: 10.1021/acs.chemrev.9b00361 Link to full text
Abstract: Molecular motors are diverse enzymes that transduce chemical energy into mechanical work and, in doing so, perform critical cellular functions such as DNA replication and transcription, DNA supercoiling, intracellular transport, and ATP synthesis. Single-molecule techniques have been extensively used to identify structural intermediates in the reaction cycles of molecular motors and to understand how substeps in energy consumption drive transitions between the intermediates. Here, we review a broad spectrum of single-molecule tools and techniques such as optical and magnetic tweezers, atomic force microscopy (AFM), single-molecule fluorescence resonance energy transfer (smFRET), nanopore tweezers, and hybrid techniques that increase the number of observables. These methods enable the manipulation of individual biomolecules via the application of forces and torques and the observation of dynamic conformational changes in single motor complexes. We also review how these techniques have been applied to study various motors such as helicases, DNA and RNA polymerases, topoisomerases, nucleosome remodelers, and motors involved in the condensation, segregation, and digestion of DNA. In-depth analysis of mechanochemical coupling in molecular motors has made the development of artificially engineered motors possible. We review techniques such as mutagenesis, chemical modifications, and optogenetics that have been used to re-engineer existing molecular motors to have, for instance, altered speed, processivity, or functionality. We also discuss how single-molecule analysis of engineered motors allows us to challenge our fundamental understanding of how molecular motors transduce energy.
925.

High-performance chemical- and light-inducible recombinases in mammalian cells and mice.

blue Magnets HEK293FT
Nat Commun, 24 Oct 2019 DOI: 10.1038/s41467-019-12800-7 Link to full text
Abstract: Site-specific DNA recombinases are important genome engineering tools. Chemical- and light-inducible recombinases, in particular, enable spatiotemporal control of gene expression. However, inducible recombinases are scarce due to the challenge of engineering high performance systems, thus constraining the sophistication of genetic circuits and animal models that can be created. Here we present a library of >20 orthogonal inducible split recombinases that can be activated by small molecules, light and temperature in mammalian cells and mice. Furthermore, we engineer inducible split Cre systems with better performance than existing systems. Using our orthogonal inducible recombinases, we create a genetic switchboard that can independently regulate the expression of 3 different cytokines in the same cell, a tripartite inducible Flp, and a 4-input AND gate. We quantitatively characterize the inducible recombinases for benchmarking their performances, including computation of distinguishability of outputs. This library expands capabilities for multiplexed mammalian gene expression control.
Submit a new publication to our database