Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1151 - 1175 of 1700 results
1151.

Direct multiplex imaging and optogenetics of Rho GTPases enabled by near-infrared FRET.

blue LOVTRAP 3T3MEF
Nat Chem Biol, 23 Apr 2018 DOI: 10.1038/s41589-018-0044-1 Link to full text
Abstract: Direct visualization and light control of several cellular processes is a challenge, owing to the spectral overlap of available genetically encoded probes. Here we report the most red-shifted monomeric near-infrared (NIR) fluorescent protein, miRFP720, and the fully NIR Förster resonance energy transfer (FRET) pair miRFP670-miRFP720, which together enabled design of biosensors compatible with CFP-YFP imaging and blue-green optogenetic tools. We developed a NIR biosensor for Rac1 GTPase and demonstrated its use in multiplexed imaging and light control of Rho GTPase signaling pathways. Specifically, we combined the Rac1 biosensor with CFP-YFP FRET biosensors for RhoA and for Rac1-GDI binding, and concurrently used the LOV-TRAP tool for upstream Rac1 activation. We directly observed and quantified antagonism between RhoA and Rac1 dependent on the RhoA-downstream effector ROCK; showed that Rac1 activity and GDI binding closely depend on the spatiotemporal coordination between these two molecules; and simultaneously observed Rac1 activity during optogenetic manipulation of Rac1.
1152.

A mobile endocytic network connects clathrin-independent receptor endocytosis to recycling and promotes T cell activation.

blue CRY2/CIB1 CRY2clust Jurkat Signaling cascade control
Nat Commun, 23 Apr 2018 DOI: 10.1038/s41467-018-04088-w Link to full text
Abstract: Endocytosis of surface receptors and their polarized recycling back to the plasma membrane are central to many cellular processes, such as cell migration, cytokinesis, basolateral polarity of epithelial cells and T cell activation. Little is known about the mechanisms that control the organization of recycling endosomes and how they connect to receptor endocytosis. Here, we follow the endocytic journey of the T cell receptor (TCR), from internalization at the plasma membrane to recycling back to the immunological synapse. We show that TCR triggering leads to its rapid uptake through a clathrin-independent pathway. Immediately after internalization, TCR is incorporated into a mobile and long-lived endocytic network demarked by the membrane-organizing proteins flotillins. Although flotillins are not required for TCR internalization, they are necessary for its recycling to the immunological synapse. We further show that flotillins are essential for T cell activation, supporting TCR nanoscale organization and signaling.
1153.

Optogenetics: A Primer for Chemists.

blue green near-infrared red UV BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Chembiochem, 19 Apr 2018 DOI: 10.1002/cbic.201800013 Link to full text
Abstract: The field of optogenetics uses genetically encoded, light-responsive proteins to control physiological processes. This technology has been hailed as the one of the ten big ideas in brain science in the past decade,[1] the breakthrough of the decade,[2] and the method of the year in 2010[3] and again in 2014[4]. The excitement evidenced by these proclamations is confirmed by a couple of impressive numbers. The term "optogenetics" was coined in 2006.[5] As of December 2017, "optogenetics" is found in the title or abstract of almost 1600 currently funded National Institutes of Health grants. In addition, nearly 600 reviews on optogenetics have appeared since 2006, which averages out to approximately one review per week! However, in spite of these impressive numbers, the potential applications and implications of optogenetics are not even close to being fully realized. This is due, in large part, to the challenges associated with the design of optogenetic analogs of endogenous proteins. This review is written from a chemist's perspective, with a focus on the molecular strategies that have been developed for the construction of optogenetic proteins.
1154.

Optogenetic regulation of transcription.

blue green near-infrared red Cryptochromes Cyanobacteriochromes LOV domains Phytochromes Review
BMC Neurosci, 19 Apr 2018 DOI: 10.1186/s12868-018-0411-6 Link to full text
Abstract: Optogenetics has become widely recognized for its success in real-time control of brain neurons by utilizing nonmammalian photosensitive proteins to open or close membrane channels. Here we review a less well known type of optogenetic constructs that employs photosensitive proteins to transduce the signal to regulate gene transcription, and its possible use in medicine. One of the problems with existing gene therapies is that they could remain active indefnitely while not allowing regulated transgene production on demand. Optogenetic regulation of transcription (ORT) could potentially be used to regulate the production of a biological drug in situ, by repeatedly applying light to the tissue, and inducing expression of therapeutic transgenes when needed. Red and near infrared wavelengths, which are capable of penetration into tissues, have potential for therapeutic applications. Existing ORT systems are reviewed herein with these considerations in mind.
1155.

Bioprinting Living Biofilms through Optogenetic Manipulation.

blue red BlrP1 BphS P. aeruginosa Control of cell-cell / cell-material interactions Immediate control of second messengers Multichromatic
ACS Synth Biol, 18 Apr 2018 DOI: 10.1021/acssynbio.8b00003 Link to full text
Abstract: In this paper, we present a new strategy for microprinting dense bacterial communities with a prescribed organization on a substrate. Unlike conventional bioprinting techniques that require bioinks, through optogenetic manipulation, we directly manipulated the behaviors of Pseudomonas aeruginosa to allow these living bacteria to autonomically form patterned biofilms following prescribed illumination. The results showed that through optogenetic manipulation, patterned bacterial communities with high spatial resolution (approximately 10 μm) could be constructed in 6 h. Thus, optogenetic manipulation greatly increases the range of available bioprinting techniques.
1156.

Engineering Proteins at Interfaces: From Complementary Characterization to Material Surfaces with Designed Functions.

blue LOV domains Review
Angew Chem Int Ed Engl, 17 Apr 2018 DOI: 10.1002/anie.201712448 Link to full text
Abstract: Once materials come in contact with a biological fluid containing proteins, proteins are generally - so desired or not - attracted by a material's surface and adsorb onto it. The aim of this review is to give an overview of the most commonly used characterization methods employed to obtain a better understanding of the adsorption processes on either planar or curved surfaces. We continue to illustrate the benefit of combining different methods to different surface geometries of the material. The thus obtained insights ideally pave the way for engineering functional materials interacting in a predetermined manner with proteins.
1157.

A green light-responsive system for the control of transgene expression in mammalian and plant cells.

green TtCBD A. thaliana leaf protoplasts Cos-7 HEK293 HeLa NIH/3T3
ACS Synth Biol, 10 Apr 2018 DOI: 10.1021/acssynbio.7b00450 Link to full text
Abstract: The ever-increasing complexity of synthetic gene networks and applications of synthetic biology requires precise and orthogonal gene expression systems. Of particular interest are systems responsive to light as they enable the control of gene expression dynamics with unprecedented resolution in space and time. While broadly used in mammalian backgrounds, however, optogenetic approaches in plant cells are still limited due to interference of the activating light with endogenous photoreceptors. Here, we describe the development of the first synthetic light-responsive system for the targeted control of gene expression in mammalian and plant cells that responds to the green range of the light spectrum in which plant photoreceptors have minimal activity. We first engineered a system based on the light-sensitive bacterial transcription factor CarH6 and its cognate DNA operator sequence CarO from Thermus thermophilus to control gene expression in mammalian cells. The system was functional in various mammalian cell lines, showing high induction (up to 350-fold) along with low leakiness, as well as high reversibility. We quantitatively described the systems characteristics by the development and experimental validation of a mathematical model. Finally, we transferred the system into A. thaliana protoplasts and demonstrated gene expression in response to green light. We expect that this system will provide new opportunities in applications based on synthetic gene networks and will open up perspectives for optogenetic studies in mammalian and plant cells.
1158.

New approaches for solving old problems in neuronal protein trafficking.

blue red UV BLUF domains Cryptochromes LOV domains Phytochromes UV receptors Review
Mol Cell Neurosci, 10 Apr 2018 DOI: 10.1016/j.mcn.2018.04.004 Link to full text
Abstract: Fundamental cellular properties are determined by the repertoire and abundance of proteins displayed on the cell surface. As such, the trafficking mechanisms for establishing and maintaining the surface proteome must be tightly regulated for cells to respond appropriately to extracellular cues, yet plastic enough to adapt to ever-changing environments. Not only are the identity and abundance of surface proteins critical, but in many cases, their regulated spatial positioning within surface nanodomains can greatly impact their function. In the context of neuronal cell biology, surface levels and positioning of ion channels and neurotransmitter receptors play essential roles in establishing important properties, including cellular excitability and synaptic strength. Here we review our current understanding of the trafficking pathways that control the abundance and localization of proteins important for synaptic function and plasticity, as well as recent technological advances that are allowing the field to investigate protein trafficking with increasing spatiotemporal precision.
1159.

Cyanobacteriochrome-based photoswitchable adenylyl cyclases (cPACs) for broad spectrum light regulation of cAMP levels in cells.

violet cPAC E. coli in vitro Immediate control of second messengers
J Biol Chem, 9 Apr 2018 DOI: 10.1074/jbc.ra118.002258 Link to full text
Abstract: Class III adenylyl cyclases generate the ubiquitous second messenger cAMP from ATP often in response to environmental or cellular cues. During evolution, soluble adenylyl-cyclase catalytic domains have been repeatedly juxtaposed with signal-input domains to place cAMP synthesis under the control of a wide variety of these environmental and endogenous signals. Adenylyl cyclases with light-sensing domains have proliferated in photosynthetic species depending on light as an energy source, yet are also widespread in non-photosynthetic species. Among such naturally occurring light sensors, several flavin-based photoactivated adenylyl cyclases (PACs) have been adopted as optogenetic tools to manipulate cellular processes with blue light. In this report, we report the discovery of a cyanobacteriochrome-based photoswitchable adenylyl cyclase (cPAC) from the cyanobacterium Microcoleussp. PCC 7113. Unlike flavin-dependent PACs, which must thermally decay to be deactivated, cPAC exhibited a bistable photocycle whose adenylyl cyclase could be reversibly activated and inactivated by blue and green light, respectively. Through domain exchange experiments, we also document the ability to extend the wavelength-sensing specificity of cPAC into the near IR. In summary, our work has uncovered a cyanobacteriochrome-based adenylyl cyclase that holds great potential for design of bistable photoswitchable adenylyl cyclases to fine-tune cAMP-regulated processes in cells. tissues, and whole organisms with light across the visible spectrum and into near IR.
1160.

Analysis of the CaMKIIα and β splice-variant distribution among brain regions reveals isoform-specific differences in holoenzyme formation.

blue CRY2/CIB1 CRY2olig HEK293
Sci Rep, 3 Apr 2018 DOI: 10.1038/s41598-018-23779-4 Link to full text
Abstract: Four CaMKII isoforms are encoded by distinct genes, and alternative splicing within the variable linker-region generates additional diversity. The α and β isoforms are largely brain-specific, where they mediate synaptic functions underlying learning, memory and cognition. Here, we determined the α and β splice-variant distribution among different mouse brain regions. Surprisingly, the nuclear variant αB was detected in all regions, and even dominated in hypothalamus and brain stem. For CaMKIIβ, the full-length variant dominated in most regions (with higher amounts of minor variants again seen in hypothalamus and brain stem). The mammalian but not fish CaMKIIβ gene lacks exon v3Nthat encodes the nuclear localization signal in αB, but contains three exons not found in the CaMKIIα gene (exons v1, v4, v5). While skipping of exons v1 and/or v5 generated the minor splice-variants β', βe and βe', essentially all transcripts contained exon v4. However, we instead detected another minor splice-variant (now termed βH), which lacks part of the hub domain that mediates formation of CaMKII holoenzymes. Surprisingly, in an optogenetic cellular assay of protein interactions, CaMKIIβH was impaired for binding to the β hub domain, but still bound CaMKIIα. This provides the first indication for isoform-specific differences in holoenzyme formation.
1161.

Synthetic Biology Makes Polymer Materials Count.

red PhyB/PIF6 in vitro Extracellular optogenetics
Adv Mater, 30 Mar 2018 DOI: 10.1002/adma.201800472 Link to full text
Abstract: Synthetic biology applies engineering concepts to build cellular systems that perceive and process information. This is achieved by assembling genetic modules according to engineering design principles. Recent advance in the field has contributed optogenetic switches for controlling diverse biological functions in response to light. Here, the concept is introduced to apply synthetic biology switches and design principles for the synthesis of multi-input-processing materials. This is exemplified by the synthesis of a materials system that counts light pulses. Guided by a quantitative mathematical model, functional synthetic biology-derived modules are combined into a polymer framework resulting in a biohybrid materials system that releases distinct output molecules specific to the number of input light pulses detected. Further demonstration of modular extension yields a light pulse-counting materials system to sequentially release different enzymes catalyzing a multistep biochemical reaction. The resulting smart materials systems can provide novel solutions as integrated sensors and actuators with broad perspectives in fundamental and applied research.
1162.

Cell-free optogenetic gene expression system.

blue EL222 in vitro Extracellular optogenetics
ACS Synth Biol, 29 Mar 2018 DOI: 10.1021/acssynbio.7b00422 Link to full text
Abstract: Optogenetic tools provide a new and efficient way to dynamically program gene expression with unmatched spatiotemporal precision. To date, its vast potential remains untapped in the field of cell-free synthetic biology, largely due to the lack of simple and efficient light-switchable systems. Here, to bridge the gap between cell-free systems and optogenetics, we studied our previously engineered one component-based blue light-inducible Escherichia coli promoter in a cell-free environment through experimental characterization and mathematical modelling. We achieved >10-fold dynamic expression and demonstrated rapid and reversible activation of target gene to generate oscillatory waveform. Deterministic model developed was able to recapitulate the system behaviour and helped to provide quantitative insights to optimize dynamic response. This in vitro optogenetic approach could be a powerful new high-throughput screening technology for rapid prototyping of complex biological networks in both space and time without the need for chemical induction.
1163.

A Rac1-FMNL2 signaling module affects cell-cell contact formation independent of Cdc42 and membrane protrusions.

blue AsLOV2 MCF10A Control of cytoskeleton / cell motility / cell shape Control of cell-cell / cell-material interactions
PLoS ONE, 26 Mar 2018 DOI: 10.1371/journal.pone.0194716 Link to full text
Abstract: De novo formation of epithelial cell-cell contacts relies on actin-based protrusions as well as tightly controlled turnover of junctional actin once cells encounter each other and adhesion complexes assemble. The specific contributions of individual actin regulators on either protrusion formation or junctional actin turnover remain largely unexplored. Based on our previous findings of Formin-like 2 (FMNL2)-mediated control of junctional actin dynamics, we investigated its potential role in membrane protrusions and impact on newly forming epithelial contacts. CRISPR/Cas9-mediated loss of FMNL2 in human MCF10A cells combined with optogenetic control of Rac1 activity confirmed its critical function in the establishment of intercellular contacts. While lamellipodial protrusion rates remained unaffected, FMNL2 knockout cells were characterized by impaired filopodia formation similar to depletion of the Rho GTPase Cdc42. Silencing of Cdc42, however, failed to affect FMNL2-mediated contact formation. Hence, we propose a cell-cell contact-specific and Rac1-mediated function of FMNL2 entirely independent of Cdc42. Consistent with this, direct visualizations of native epithelial junction formation revealed a striking and specifically Rac1- and not Cdc42-dependent recruitment of FMNL2 to newly forming junctions as well as established cell-cell contacts within epithelial sheets.
1164.

Induction of signal transduction using non-channelrhodopsin-type optogenetic tools.

blue cyan near-infrared red UV Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Chembiochem, 25 Mar 2018 DOI: 10.1002/cbic.201700635 Link to full text
Abstract: Signal transductions are the basis for all cellular functions. Previous studies investigating signal transductions mainly relied on pharmacological inhibition, RNA interference, and constitutive active/dominant negative protein expression systems. However, such studies do not allow the modulation of protein activity in cells, tissues, and organs in animals with high spatial and temporal precision. Recently, non-channelrhodopsin-type optogenetic tools for regulating signal transduction have emerged. These photoswitches address several disadvantages of previous techniques, and allow us to control a variety of signal transductions such as cell membrane dynamics, calcium signaling, lipid signaling, and apoptosis. In this review, we summarize recent advances in the development of such photoswitches and how these optotools are applied to signaling processes.
1165.

A biochemical network controlling basal myosin oscillation.

blue CRY2/CIB1 D. melanogaster in vivo Signaling cascade control Control of cytoskeleton / cell motility / cell shape
Nat Commun, 23 Mar 2018 DOI: 10.1038/s41467-018-03574-5 Link to full text
Abstract: The actomyosin cytoskeleton, a key stress-producing unit in epithelial cells, oscillates spontaneously in a wide variety of systems. Although much of the signal cascade regulating myosin activity has been characterized, the origin of such oscillatory behavior is still unclear. Here, we show that basal myosin II oscillation in Drosophila ovarian epithelium is not controlled by actomyosin cortical tension, but instead relies on a biochemical oscillator involving ROCK and myosin phosphatase. Key to this oscillation is a diffusive ROCK flow, linking junctional Rho1 to medial actomyosin cortex, and dynamically maintained by a self-activation loop reliant on ROCK kinase activity. In response to the resulting myosin II recruitment, myosin phosphatase is locally enriched and shuts off ROCK and myosin II signals. Coupling Drosophila genetics, live imaging, modeling, and optogenetics, we uncover an intrinsic biochemical oscillator at the core of myosin II regulatory network, shedding light on the spatio-temporal dynamics of force generation.
1166.

An Optogenetic Method to Control and Analyze Gene Expression Patterns in Cell-to-cell Interactions.

blue VVD C2C12
J Vis Exp, 22 Mar 2018 DOI: 10.3791/57149 Link to full text
Abstract: Cells should respond properly to temporally changing environments, which are influenced by various factors from surrounding cells. The Notch signaling pathway is one of such essential molecular machinery for cell-to-cell communications, which plays key roles in normal development of embryos. This pathway involves a cell-to-cell transfer of oscillatory information with ultradian rhythms, but despite the progress in molecular biology techniques, it has been challenging to elucidate the impact of multicellular interactions on oscillatory gene dynamics. Here, we present a protocol that permits optogenetic control and live monitoring of gene expression patterns in a precise temporal manner. This method successfully revealed that intracellular and intercellular periodic inputs of Notch signaling entrain intrinsic oscillations by frequency tuning and phase shifting at the single-cell resolution. This approach is applicable to the analysis of the dynamic features of various signaling pathways, providing a unique platform to test a functional significance of dynamic gene expression programs in multicellular systems.
1167.

Optogenetic regulation of engineered cellular metabolism for microbial chemical production.

blue EL222 S. cerevisiae Transgene expression
Nature, 21 Mar 2018 DOI: 10.1038/nature26141 Link to full text
Abstract: The optimization of engineered metabolic pathways requires careful control over the levels and timing of metabolic enzyme expression. Optogenetic tools are ideal for achieving such precise control, as light can be applied and removed instantly without complex media changes. Here we show that light-controlled transcription can be used to enhance the biosynthesis of valuable products in engineered Saccharomyces cerevisiae. We introduce new optogenetic circuits to shift cells from a light-induced growth phase to a darkness-induced production phase, which allows us to control fermentation with only light. Furthermore, optogenetic control of engineered pathways enables a new mode of bioreactor operation using periodic light pulses to tune enzyme expression during the production phase of fermentation to increase yields. Using these advances, we control the mitochondrial isobutanol pathway to produce up to 8.49 ± 0.31 g l-1of isobutanol and 2.38 ± 0.06 g l-1of 2-methyl-1-butanol micro-aerobically from glucose. These results make a compelling case for the application of optogenetics to metabolic engineering for the production of valuable products.
1168.

Biofilm Lithography enables high-resolution cell patterning via optogenetic adhesin expression.

blue YtvA E. coli Transgene expression Control of cell-cell / cell-material interactions
Proc Natl Acad Sci USA, 19 Mar 2018 DOI: 10.1073/pnas.1720676115 Link to full text
Abstract: Bacterial biofilms represent a promising opportunity for engineering of microbial communities. However, our ability to control spatial structure in biofilms remains limited. Here we engineerEscherichia coliwith a light-activated transcriptional promoter (pDawn) to optically regulate expression of an adhesin gene (Ag43). When illuminated with patterned blue light, long-term viable biofilms with spatial resolution down to 25 μm can be formed on a variety of substrates and inside enclosed culture chambers without the need for surface pretreatment. A biophysical model suggests that the patterning mechanism involves stimulation of transiently surface-adsorbed cells, lending evidence to a previously proposed role of adhesin expression during natural biofilm maturation. Overall, this tool-termed "Biofilm Lithography"-has distinct advantages over existing cell-depositing/patterning methods and provides the ability to grow structured biofilms, with applications toward an improved understanding of natural biofilm communities, as well as the engineering of living biomaterials and bottom-up approaches to microbial consortia design.
1169.

Optogenetic Control of Cell Migration.

blue CRY2/CIB1 iLID RAW264.7 Control of cytoskeleton / cell motility / cell shape
Methods Mol Biol, 11 Mar 2018 DOI: 10.1007/978-1-4939-7701-7_22 Link to full text
Abstract: Subcellular optogenetics allows specific proteins to be optically activated or inhibited at a restricted subcellular location in intact living cells. It provides unprecedented control of dynamic cell behaviors. Optically modulating the activity of signaling molecules on one side of a cell helps optically control cell polarization and directional cell migration. Combining subcellular optogenetics with live cell imaging of the induced molecular and cellular responses in real time helps decipher the spatially and temporally dynamic molecular mechanisms that control a stereotypical complex cell behavior, cell migration. Here we describe methods for optogenetic control of cell migration by targeting three classes of key signaling switches that mediate directional cellular chemotaxis-G protein coupled receptors (GPCRs), heterotrimeric G proteins, and Rho family monomeric G proteins.
1170.

CRISPR/dCas9 Switch Systems for Temporal Transcriptional Control.

blue red Cryptochromes LOV domains Phytochromes Review
Methods Mol Biol, 10 Mar 2018 DOI: 10.1007/978-1-4939-7774-1_8 Link to full text
Abstract: In a swift revolution, CRISPR/Cas9 has reshaped the means and ease of interrogating biological questions. Particularly, mutants that result in a nuclease-deactivated Cas9 (dCas9) provide scientists with tools to modulate transcription of genomic loci at will by targeting transcriptional effector domains. To interrogate the temporal order of events during transcriptional regulation, rapidly inducible CRISPR/dCas9 systems provide previously unmet molecular tools. In only a few years of time, numerous light and chemical-inducible switches have been applied to CRISPR/dCas9 to generate dCas9 switches. As these inducible switch systems are able to modulate dCas9 directly at the protein level, they rapidly affect dCas9 stability, activity, or target binding and subsequently rapidly influence downstream transcriptional events. Here we review the current state of such biotechnological CRISPR/dCas9 enhancements. Specifically we provide details on their flaws and strengths and on the differences in molecular design between the switch systems. With this we aim to provide a selection guide for researchers with keen interest in rapid temporal control over transcriptional modulation through the CRISPR/dCas9 system.
1171.

Rewiring Calcium Signaling for Precise Transcriptional Reprogramming.

blue AsLOV2 LOVTRAP HEK293T HeLa Endogenous gene expression Immediate control of second messengers
ACS Synth Biol, 6 Mar 2018 DOI: 10.1021/acssynbio.7b00467 Link to full text
Abstract: Tools capable of modulating gene expression in living organisms are very useful for interrogating the gene regulatory network and controlling biological processes. The catalytically inactive CRISPR/Cas9 (dCas9), when fused with repressive or activating effectors, functions as a versatile platform to reprogram gene transcription at targeted genomic loci. However, without temporal control, the application of these reprogramming tools will likely cause off-target effects and lack strict reversibility. To overcome this limitation, we report herein the development of a chemical or light-inducible transcriptional reprogramming device that combines photoswitchable genetically encoded calcium actuators with dCas9 to control gene expression. By fusing an engineered Ca2+-responsive NFAT fragment with dCas9 and transcriptional coactivators, we harness the power of light to achieve photoinducible transcriptional reprogramming in mammalian cells. This synthetic system (designated CaRROT) can also be used to document calcium-dependent activity in mammals after exposure to ligands or chemicals that would elicit calcium response inside cells.
1172.

Optogenetically controlled protein kinases for regulation of cellular signaling.

blue cyan green near-infrared red Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Chem Soc Rev, 2 Mar 2018 DOI: 10.1039/c7cs00404d Link to full text
Abstract: Protein kinases are involved in the regulation of many cellular processes including cell differentiation, survival, migration, axon guidance and neuronal plasticity. A growing set of optogenetic tools, termed opto-kinases, allows activation and inhibition of different protein kinases with light. The optogenetic regulation enables fast, reversible and non-invasive manipulation of protein kinase activities, complementing traditional methods, such as treatment with growth factors, protein kinase inhibitors or chemical dimerizers. In this review, we summarize the properties of the existing optogenetic tools for controlling tyrosine kinases and serine-threonine kinases. We discuss how the opto-kinases can be applied for studies of spatial and temporal aspects of protein kinase signaling in cells and organisms. We compare approaches for chemical and optogenetic regulation of protein kinase activity and present guidelines for selection of opto-kinases and equipment to control them with light. We also describe strategies to engineer novel opto-kinases on the basis of various photoreceptors.
1173.

Illuminating developmental biology with cellular optogenetics.

blue Cryptochromes LOV domains Review
Curr Opin Biotechnol, 2 Mar 2018 DOI: 10.1016/j.copbio.2018.02.003 Link to full text
Abstract: In developmental biology, localization is everything. The same stimulus-cell signaling event or expression of a gene-can have dramatically different effects depending on the time, spatial position, and cell types in which it is applied. Yet the field has long lacked the ability to deliver localized perturbations with high specificity in vivo. The advent of optogenetic tools, capable of delivering highly localized stimuli, is thus poised to profoundly expand our understanding of development. We describe the current state-of-the-art in cellular optogenetic tools, review the first wave of major studies showcasing their application in vivo, and discuss major obstacles that must be overcome if the promise of developmental optogenetics is to be fully realized.
1174.

Near-infrared light-controlled gene expression and protein targeting in neurons and non-neuronal cells.

blue near-infrared AsLOV2 BphP1/Q-PAS1 Cos-7 HEK293 HeLa Neuro-2a rat cortical neurons SH-SY5Y U-2 OS Multichromatic
Chembiochem, 21 Feb 2018 DOI: 10.1002/cbic.201700642 Link to full text
Abstract: Near-infrared (NIR) light-inducible binding of bacterial phytochrome BphP1 to its engineered partner QPAS1 is used for optical protein regulation in mammalian cells. However, there are no data on the application of the BphP1-QPAS1 pair in cells derived from various mammalian tissues. Here, we tested functionality of two BphP1-QPAS1-based optogenetic tools, such as an NIR and blue light-sensing system for control of protein localization (iRIS) and an NIR light-sensing system for transcription activation (TA), in several cell types including cortical neurons. We found that the performance of these optogenetic tools often rely on physiological properties of a specific cell type, such as nuclear transport, which may limit applicability of blue light-sensitive component of iRIS. In contrast, the NIR-light-sensing part of iRIS performed well in all tested cell types. The TA system showed the best performance in HeLa, U-2 OS and HEK-293 cells. Small size of the QPAS1 component allows designing AAV viral particles, which were applied to deliver the TA system to neurons.
1175.

Light-activated protein interaction with high spatial subcellular confinement.

blue CRY2/CIB1 iLID Magnets Cos-7 HeLa human primary dermal fibroblasts primary mouse cortical neurons primary mouse hippocampal neurons Benchmarking
Proc Natl Acad Sci USA, 20 Feb 2018 DOI: 10.1073/pnas.1713845115 Link to full text
Abstract: Methods to acutely manipulate protein interactions at the subcellular level are powerful tools in cell biology. Several blue-light-dependent optical dimerization tools have been developed. In these systems one protein component of the dimer (the bait) is directed to a specific subcellular location, while the other component (the prey) is fused to the protein of interest. Upon illumination, binding of the prey to the bait results in its subcellular redistribution. Here, we compared and quantified the extent of light-dependent dimer occurrence in small, subcellular volumes controlled by three such tools: Cry2/CIB1, iLID, and Magnets. We show that both the location of the photoreceptor protein(s) in the dimer pair and its (their) switch-off kinetics determine the subcellular volume where dimer formation occurs and the amount of protein recruited in the illuminated volume. Efficient spatial confinement of dimer to the area of illumination is achieved when the photosensitive component of the dimerization pair is tethered to the membrane of intracellular compartments and when on and off kinetics are extremely fast, as achieved with iLID or Magnets. Magnets and the iLID variants with the fastest switch-off kinetics induce and maintain protein dimerization in the smallest volume, although this comes at the expense of the total amount of dimer. These findings highlight the distinct features of different optical dimerization systems and will be useful guides in the choice of tools for specific applications.
Submit a new publication to our database