Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 25 of 34 results

Light-directed evolution of dynamic, multi-state, and computational protein functionalities.

blue red EL222 PhyB/PIF3 S. cerevisiae Cell cycle control Transgene expression
bioRxiv, 2 Mar 2024 DOI: 10.1101/2024.02.28.582517 Link to full text
Abstract: Directed evolution is a powerful method in biological engineering. Current approaches were devised for evolving steady-state properties such as enzymatic activity or fluorescence intensity. A fundamental problem remains how to evolve dynamic, multi-state, or computational functionalities, e.g., folding times, on-off kinetics, state-specific activity, stimulus-responsiveness, or switching and logic capabilities. These require applying selection pressure on all of the states of a protein of interest (POI) and the transitions between them. We realized that optogenetics and cell cycle oscillations could be leveraged for a novel directed evolution paradigm (‘optovolution’) that is germane for this need: We designed a signaling cascade in budding yeast where optogenetic input switches the POI between off (0) and on (1) states. In turn, the POI controls a Cdk1 cyclin, which in the re-engineered cell cycle system is essential for one cell cycle stage but poisonous for another. Thus, the cyclin must oscillate (1-0-1-0…) for cell proliferation. In this system, evolution can act efficiently on the dynamics, transient states, and input-output relations of the POI in every cell cycle. Further, controlling the pacemaker, light, directs and tunes selection pressures. Optovolution is in vivo, continuous, self-selecting, and genetically robust. We first evolved two optogenetic systems, which relay 0/1 input to 0/1 output: We obtained 25 new variants of the widely used LOV transcription factor El222. These mutants were stronger, less leaky, or green- and red-responsive. The latter was conjectured to be impossible for LOV domains but is needed for multiplexing and lowering phototoxicity. Evolving the PhyB-Pif3 optogenetic system, we discovered that loss of YOR1 makes supplementing the expensive and unstable chromophore phycocyanobilin (PCB) unnecessary. Finally, we demonstrate the generality of the method by creating and evolving a destabilized rtTA transcription factor, which performs an AND operation between transcriptional and doxycycline input. Optovolution makes coveted, difficult-to-change protein functionalities evolvable.

Light-driven synchronization of optogenetic clocks.

green CcaS/CcaR E. coli Cell cycle control Transgene expression
bioRxiv, 24 Oct 2023 DOI: 10.1101/2023.10.24.563722 Link to full text
Abstract: Synthetic genetic oscillators can serve as internal clocks within engineered cells to program periodic expression. However, cell-to-cell variability introduces a dispersion in the characteristics of these clocks that drives the population to complete desynchronization. Here we introduce the optorepressilator, an optically controllable genetic clock that combines the repressilator, a three-node synthetic network in E. coli, with an optogenetic module enabling to reset, delay, or advance its phase using optical inputs. We demonstrate that a population of optorepressilators can be synchronized by transient green light exposure or entrained to oscillate indefinitely by a train of short pulses, through a mechanism reminiscent of natural circadian clocks. Furthermore, we investigate the system’s response to detuned external stimuli observing multiple regimes of global synchronization. Integrating experiments and mathematical modeling, we show that the entrainment mechanism is robust and can be understood quantitatively from single cell to population level.

Cell Cycle Control by Optogenetically Regulated Cell Cycle Inhibitor Protein p21.

blue AsLOV2 CRY2/CIB1 CHO-K1 HEK293T Cell cycle control
Biology (Basel), 31 Aug 2023 DOI: 10.3390/biology12091194 Link to full text
Abstract: The progression through the cell cycle phases is driven by cyclin-dependent kinases and cyclins as their regulatory subunits. As nuclear protein, the cell cycle inhibitor p21/CDKN1A arrests the cell cycle at the growth phase G1 by inhibiting the activity of cyclin-dependent kinases. The G1 phase correlates with increased cell size and cellular productivity. Here, we applied an optogenetic approach to control the subcellular localization of p21 and its nuclear functions. To generate light-controllable p21, appropriate fusions with the blue light switch cryptochrome 2/CIBN and the AsLOV-based light-inducible nuclear localization signal, LINuS, were used. Both systems, p21-CRY2/CIB1 and p21-LINuS, increased the amounts of cells arrested in the G1 phase correlating with the increased cell-specific productivity of the reporter-protein-secreted alkaline phosphatase. Varying the intervals of blue LED light exposure and the light dose enable the fine-tuning of the systems. Light-controllable p21 implemented in producer cell lines could be applied to steer the uncoupling of cell proliferation and cell cycle arrest at the G1 phase optimizing the production of biotherapeutic proteins.

Optogenetic control of Cdc48 for dynamic metabolic engineering in yeast.

blue AsLOV2 CRY2/CIB1 S. cerevisiae Cell cycle control
Metab Eng, 7 Jul 2023 DOI: 10.1016/j.ymben.2023.06.013 Link to full text
Abstract: Dynamic metabolic engineering is a strategy to switch key metabolic pathways in microbial cell factories from biomass generation to accumulation of target products. Here, we demonstrate that optogenetic intervention in the cell cycle of budding yeast can be used to increase production of valuable chemicals, such as the terpenoid β-carotene or the nucleoside analog cordycepin. We achieved optogenetic cell-cycle arrest in the G2/M phase by controlling activity of the ubiquitin-proteasome system hub Cdc48. To analyze the metabolic capacities in the cell cycle arrested yeast strain, we studied their proteomes by timsTOF mass spectrometry. This revealed widespread, but highly distinct abundance changes of metabolic key enzymes. Integration of the proteomics data in protein-constrained metabolic models demonstrated modulation of fluxes directly associated with terpenoid production as well as metabolic subsystems involved in protein biosynthesis, cell wall synthesis, and cofactor biosynthesis. These results demonstrate that optogenetically triggered cell cycle intervention is an option to increase the yields of compounds synthesized in a cellular factory by reallocation of metabolic resources.

A cytokinetic ring-driven cell rotation achieves Hertwig’s rule in early development.

blue TULIP C. elegans in vivo Control of cytoskeleton / cell motility / cell shape Cell cycle control
bioRxiv, 27 Jun 2023 DOI: 10.1101/2023.06.23.546115 Link to full text
Abstract: Cells tend to divide along the direction in which they are longest, as famously stated by Oscar Hertwig in 1884 in his long axis rule. The orientation of the mitotic spindle determines the cell division axis, and the long axis rule is usually ensured by forces stemming from microtubules. Pulling on the spindle from the cell cortex can give rise to unstable behaviors, and we here set out to understand how the long axis rule is realized in early embryonic divisions where cortical pulling forces are prevalent. We focus on early C. elegans development, where we compressed embryos to reveal that cortical pulling forces favor an alignment of the spindle with the short axis of the cell. Strikingly, we find that this misalignment is corrected by an actomyosin-based mechanism that rotates the entire cell, including the mitotic spindle. We uncover that myosin-driven contractility in the cytokinetic ring generates inward forces that align it with the short axis, and thereby the spindle with the long axis. A theoretical model together with experiments using slightly compressed mouse zygotes suggest that a constricting cytokinetic ring can ensure the long axis rule in cells that are free to rotate inside a confining structure, thereby generalizing the underlying principle.

Controlling protein stability with SULI, a highly sensitive tag for stabilization upon light induction.

blue PtAU1-LOV VVD S. cerevisiae zebrafish in vivo Cell cycle control Developmental processes
Nat Commun, 15 Apr 2023 DOI: 10.1038/s41467-023-37830-0 Link to full text
Abstract: Optogenetics tools for precise temporal and spatial control of protein abundance are valuable in studying diverse complex biological processes. In the present study, we engineer a monomeric tag of stabilization upon light induction (SULI) for yeast and zebrafish based on a single light-oxygen-voltage domain from Neurospora crassa. Proteins of interest fused with SULI are stable upon light illumination but are readily degraded after transfer to dark conditions. SULI shows a high dynamic range and a high tolerance to fusion at different positions of the target protein. Further studies reveal that SULI-mediated degradation occurs through a lysine ubiquitination-independent proteasome pathway. We demonstrate the usefulness of SULI in controlling the cell cycle in yeast and regulating protein stability in zebrafish, respectively. Overall, our data indicate that SULI is a simple and robust tool to quantitatively and spatiotemporally modulate protein levels for biotechnological or biomedical applications.

Polarized branched Actin modulates cortical mechanics to produce unequal-size daughters during asymmetric division.

blue CRY2/CIB1 TULIP D. melanogaster in vivo Cell cycle control Transgene expression
Nat Cell Biol, 6 Feb 2023 DOI: 10.1038/s41556-022-01058-9 Link to full text
Abstract: The control of cell shape during cytokinesis requires a precise regulation of mechanical properties of the cell cortex. Only few studies have addressed the mechanisms underlying the robust production of unequal-sized daughters during asymmetric cell division. Here we report that unequal daughter-cell sizes resulting from asymmetric sensory organ precursor divisions in Drosophila are controlled by the relative amount of cortical branched Actin between the two cell poles. We demonstrate this by mistargeting the machinery for branched Actin dynamics using nanobodies and optogenetics. We can thereby engineer the cell shape with temporal precision and thus the daughter-cell size at different stages of cytokinesis. Most strikingly, inverting cortical Actin asymmetry causes an inversion of daughter-cell sizes. Our findings uncover the physical mechanism by which the sensory organ precursor mother cell controls relative daughter-cell size: polarized cortical Actin modulates the cortical bending rigidity to set the cell surface curvature, stabilize the division and ultimately lead to unequal daughter-cell size.

Opto-katanin, an optogenetic tool for localized, microtubule disassembly.

blue iLID VVD Cos-7 HeLa HT-1080 human retinal pigment epithelium cells rat hippocampal neurons U-2 OS Control of cytoskeleton / cell motility / cell shape Cell cycle control Control of vesicular transport
Curr Biol, 28 Sep 2022 DOI: 10.1016/j.cub.2022.09.010 Link to full text
Abstract: Microtubules are cytoskeletal polymers that separate chromosomes during mitosis and serve as rails for intracellular transport and organelle positioning. Manipulation of microtubules is widely used in cell and developmental biology, but tools for precise subcellular spatiotemporal control of microtubules are currently lacking. Here, we describe a light-activated system for localized recruitment of the microtubule-severing enzyme katanin. This system, named opto-katanin, uses targeted illumination with blue light to induce rapid, localized, and reversible microtubule depolymerization. This tool allows precise clearing of a subcellular region of microtubules while preserving the rest of the microtubule network, demonstrating that regulation of katanin recruitment to microtubules is sufficient to control its severing activity. The tool is not toxic in the absence of blue light and can be used to disassemble both dynamic and stable microtubules in primary neurons as well as in dividing cells. We show that opto-katanin can be used to locally block vesicle transport and to clarify the dependence of organelle morphology and dynamics on microtubules. Specifically, our data indicate that microtubules are not required for the maintenance of the Golgi stacks or the tubules of the endoplasmic reticulum but are needed for the formation of new membrane tubules. Finally, we demonstrate that this tool can be applied to study the contribution of microtubules to cell mechanics by showing that microtubule bundles can exert forces constricting the nucleus.

Light-dependent modulation of protein localization and function in living bacteria cells.

blue CRY2/CIB1 E. coli Control of cytoskeleton / cell motility / cell shape Cell cycle control
bioRxiv, 1 May 2022 DOI: 10.1101/2022.05.01.490209 Link to full text
Abstract: Most bacteria lack membrane-enclosed organelles to compartmentalize cellular processes. In lieu of physical compartments, bacterial proteins are often recruited to macromolecular scaffolds at specific subcellular locations to carry out their functions. Consequently, the ability to modulate a protein’s subcellular location with high precision and speed bears the potential to manipulate its corresponding cellular functions. Here we demonstrate that the CRY2/CIB1 system from Arabidopsis thaliana can be used to rapidly direct proteins to different subcellular locations inside live E. coli cells including the nucleoid, the cell pole, membrane, and the midcell division plane. We further show that such light-induced re-localization can be used to rapidly inhibit cytokinesis in actively dividing E. coli cells. Finally, we demonstrate that the CRY2/CIBN binding kinetics can be modulated by green light, adding a new dimension of control to the system.

Optoribogenetic control of regulatory RNA molecules.

blue PAL HEK293 Cell cycle control Transgene expression
Nat Commun, 24 Sep 2020 DOI: 10.1038/s41467-020-18673-5 Link to full text
Abstract: Short regulatory RNA molecules underpin gene expression and govern cellular state and physiology. To establish an alternative layer of control over these processes, we generated chimeric regulatory RNAs that interact reversibly and light-dependently with the light-oxygen-voltage photoreceptor PAL. By harnessing this interaction, the function of micro RNAs (miRs) and short hairpin (sh) RNAs in mammalian cells can be regulated in a spatiotemporally precise manner. The underlying strategy is generic and can be adapted to near-arbitrary target sequences. Owing to full genetic encodability, it establishes optoribogenetic control of cell state and physiology. The method stands to facilitate the non-invasive, reversible and spatiotemporally resolved study of regulatory RNAs and protein function in cellular and organismal environments.

Development of optogenetic tools to manipulate cell cycle checkpoints.

red PhyB/PIF3 S. pombe Cell cycle control
bioRxiv, 23 Jun 2020 DOI: 10.1101/2020.06.22.166264 Link to full text
Abstract: In order to understand the systematic regulation of the cell cycle, we need more precise tools for cell-cycle perturbation. Optogenetics is a powerful technique for precisely controlling cellular signaling at higher spatial and temporal resolution. Here, we report optogenetic tools for the rapid and reversible control of cell-cycle checkpoints with a red/far-red light photoreceptor, phytochrome B (PhyB). We established fission yeast cells producing phycocyanobilin as a chromophore of PhyB, and demonstrated light-dependent protein recruitment to the plasma membrane, nucleus, and kinetochore. Using this system, we developed optogenetic manipulation of the cell cycle in two ways: the Opto-G2/M checkpoint triggered G2/M cell cycle arrest in response to red light, and Opto-SAC induced a spindle assembly checkpoint (SAC) in response to red light and then quickly released the SAC by far-red light.

Light-powered Escherichia coli cell division for chemical production.

blue red BphS EL222 E. coli Cell cycle control Endogenous gene expression Immediate control of second messengers Multichromatic
Nat Commun, 8 May 2020 DOI: 10.1038/s41467-020-16154-3 Link to full text
Abstract: Cell division can perturb the metabolic performance of industrial microbes. The C period of cell division starts from the initiation to the termination of DNA replication, whereas the D period is the bacterial division process. Here, we first shorten the C and D periods of E. coli by controlling the expression of the ribonucleotide reductase NrdAB and division proteins FtsZA through blue light and near-infrared light activation, respectively. It increases the specific surface area to 3.7 μm-1 and acetoin titer to 67.2 g·L-1. Next, we prolong the C and D periods of E. coli by regulating the expression of the ribonucleotide reductase NrdA and division protein inhibitor SulA through blue light activation-repression and near-infrared (NIR) light activation, respectively. It improves the cell volume to 52.6 μm3 and poly(lactate-co-3-hydroxybutyrate) titer to 14.31 g·L-1. Thus, the optogenetic-based cell division regulation strategy can improve the efficiency of microbial cell factories.

A Live-Cell Screen for Altered Erk Dynamics Reveals Principles of Proliferative Control.

blue iLID mouse epidermal keratinocytes Signaling cascade control Cell cycle control
Cell Syst, 16 Mar 2020 DOI: 10.1016/j.cels.2020.02.005 Link to full text
Abstract: Complex, time-varying responses have been observed widely in cell signaling, but how specific dynamics are generated or regulated is largely unknown. One major obstacle has been that high-throughput screens are typically incompatible with the live-cell assays used to monitor dynamics. Here, we address this challenge by screening a library of 429 kinase inhibitors and monitoring extracellular-regulated kinase (Erk) activity over 5 h in more than 80,000 single primary mouse keratinocytes. Our screen reveals both known and uncharacterized modulators of Erk dynamics, including inhibitors of non-epidermal growth factor receptor (EGFR) receptor tyrosine kinases (RTKs) that increase Erk pulse frequency and overall activity. Using drug treatment and direct optogenetic control, we demonstrate that drug-induced changes to Erk dynamics alter the conditions under which cells proliferate. Our work opens the door to high-throughput screens using live-cell biosensors and reveals that cell proliferation integrates information from Erk dynamics as well as additional permissive cues.

Mps1-mediated release of Mad1 from nuclear pores ensures the fidelity of chromosome segregation.

blue CRY2/CIB1 Schneider 2 Cell cycle control
J Cell Biol, 2 Mar 2020 DOI: 10.1083/jcb.201906039 Link to full text
Abstract: The spindle assembly checkpoint (SAC) relies on the recruitment of Mad1-C-Mad2 to unattached kinetochores but also on its binding to Megator/Tpr at nuclear pore complexes (NPCs) during interphase. However, the molecular underpinnings controlling the spatiotemporal redistribution of Mad1-C-Mad2 as cells progress into mitosis remain elusive. Here, we show that activation of Mps1 during prophase triggers Mad1 release from NPCs and that this is required for kinetochore localization of Mad1-C-Mad2 and robust SAC signaling. We find that Mps1 phosphorylates Megator/Tpr to reduce its interaction with Mad1 in vitro and in Drosophila cells. Importantly, preventing Mad1 from binding to Megator/Tpr restores Mad1 accumulation at kinetochores, the fidelity of chromosome segregation, and genome stability in larval neuroblasts of mps1-null mutants. Our findings demonstrate that the subcellular localization of Mad1 is tightly coordinated with cell cycle progression by kinetochore-extrinsic activity of Mps1. This ensures that both NPCs in interphase and kinetochores in mitosis can generate anaphase inhibitors to efficiently preserve genomic stability.

Pulsatile MAPK Signaling Modulates p53 Activity to Control Cell Fate Decisions at the G2 Checkpoint for DNA Damage.

blue CRY2/CIB1 MCF7 Signaling cascade control Cell cycle control
Cell Rep, 18 Feb 2020 DOI: 10.1016/j.celrep.2020.01.074 Link to full text
Abstract: Cell-autonomous changes in p53 expression govern the duration and outcome of cell-cycle arrest at the G2 checkpoint for DNA damage. Here, we report that mitogen-activated protein kinase (MAPK) signaling integrates extracellular cues with p53 dynamics to determine cell fate at the G2 checkpoint. Optogenetic tools and quantitative cell biochemistry reveal transient oscillations in MAPK activity dependent on ataxia-telangiectasia-mutated kinase after DNA damage. MAPK inhibition alters p53 dynamics and p53-dependent gene expression after checkpoint enforcement, prolonging G2 arrest. In contrast, sustained MAPK signaling induces the phosphorylation of CDC25C, and consequently, the accumulation of pro-mitotic kinases, thereby relaxing checkpoint stringency and permitting cells to evade prolonged G2 arrest and senescence induction. We propose a model in which this MAPK-mediated mechanism integrates extracellular cues with cell-autonomous p53-mediated signals, to safeguard genomic integrity during tissue proliferation. Early steps in oncogene-driven carcinogenesis may imbalance this tumor-suppressive mechanism to trigger genome instability.

Optogenetic downregulation of protein levels with an ultrasensitive switch.

blue AsLOV2 AtLOV2 iLID LOVTRAP S. cerevisiae Cell cycle control Transgene expression
ACS Synth Biol, 8 Apr 2019 DOI: 10.1021/acssynbio.8b00471 Link to full text
Abstract: Optogenetic control of protein activity is a versatile technique to gain control over cellular processes, e.g. for biomedical and biotechnological applications. Among other techniques, the regulation of protein abundance by controlling either transcription or protein stability found common use as this controls the activity of any type of target protein. Here, we report modules of an improved variant of the photosensitive degron module and a light-sensitive transcription factor, which we compared to doxycycline-dependent transcriptional control. Given their modularity the combined control of synthesis and stability of a given target protein resulted in the synergistic down regulation of its abundance by light. This combined module exhibits very high switching ratios, profound downregulation of protein abundance at low light-fluxes as well as fast protein depletion kinetics. Overall, this synergistic optogenetic multistep control (SOMCo) module is easy to implement and results in a regulation of protein abundance superior to each individual component.

A size-invariant bud-duration timer enables robustness in yeast cell size control.

red PhyB/PIF6 S. cerevisiae Cell cycle control
PLoS ONE, 21 Dec 2018 DOI: 10.1371/journal.pone.0209301 Link to full text
Abstract: Cell populations across nearly all forms of life generally maintain a characteristic cell type-dependent size, but how size control is achieved has been a long-standing question. The G1/S boundary of the cell cycle serves as a major point of size control, and mechanisms operating here restrict passage of cells to Start if they are too small. In contrast, it is less clear how size is regulated post-Start, during S/G2/M. To gain further insight into post-Start size control, we prepared budding yeast that can be reversibly blocked from bud initiation. While blocked, cells continue to grow isotropically, increasing their volume by more than an order of magnitude over unperturbed cells. Upon release from their block, giant mothers reenter the cell cycle and their progeny rapidly return to the original unperturbed size. We found this behavior to be consistent with a size-invariant 'timer' specifying the duration of S/G2/M. These results indicate that yeast use at least two distinct mechanisms at different cell cycle phases to ensure size homeostasis.

Luminescence-activated nucleotide cyclase regulates spatial and temporal cAMP synthesis.

blue bPAC (BlaC) HC-1 HEK293 PCCL3 Cell cycle control Immediate control of second messengers
J Biol Chem, 17 Dec 2018 DOI: 10.1074/jbc.ac118.004905 Link to full text
Abstract: cAMP is a ubiquitous second messenger that regulates cellular proliferation, differentiation, attachment, migration, and several other processes. It has become increasingly evident that tight regulation of cAMP accumulation and localization confers divergent yet specific signaling to downstream pathways. Currently, few tools are available that have sufficient spatial and temporal resolution to study location-biased cAMP signaling. Here, we introduce a new fusion protein consisting of a light-activated adenylyl cyclase (bPAC) and luciferase (nLuc). This construct allows dual activation of cAMP production through temporally precise photostimulation or chronic chemical stimulation that can be fined-tuned to mimic physiological levels and duration of cAMP synthesis to trigger downstream events. By targeting this construct to different compartments, we show that cAMP produced in the cytosol and nucleus stimulates proliferation in thyroid cells. The bPAC-nLuc fusion construct adds a new reagent to the available toolkit to study cAMP-regulated processes in living cells.

A Single-Component Optogenetic System Allows Stringent Switch of Gene Expression in Yeast Cells.

blue CRY2/CIB1 VVD S. cerevisiae Cell cycle control Transgene expression
ACS Synth Biol, 4 Sep 2018 DOI: 10.1021/acssynbio.8b00180 Link to full text
Abstract: Light is a highly attractive actuator that allows spatiotemporal control of diverse cellular activities. In this study, we developed a single-component light-switchable gene expression system for yeast cells, termed yLightOn system. The yLightOn system is independent of exogenous cofactors, and exhibits more than a 500-fold ON/OFF ratio, extremely low leakage, fast expression kinetics, and high spatial resolution. We demonstrated the usefulness of the yLightOn system in regulating cell growth and cell cycle by stringently controlling the expression of His3 and ΔN Sic1 genes, respectively. Furthermore, we engineered a bidirectional expression module that allows the simultaneous control of the expression of two genes by light. With ClpX and ClpP as the reporters, the fast, quantitative, and spatially specific degradation of ssrA-tagged protein was observed. We suggest that this single-component optogenetic system will be immensely helpful in understanding cellular gene regulatory networks and in the design of robust genetic circuits for synthetic biology.

Cancer mutations and targeted drugs can disrupt dynamic signal encoding by the Ras-Erk pathway.

red PhyB/PIF6 16HBE14o- BEAS-2B HCC827 II-18 NCI-H1395 NCI-H441 NIH/3T3 Signaling cascade control Cell cycle control
Science, 31 Aug 2018 DOI: 10.1126/science.aao3048 Link to full text
Abstract: The Ras-Erk (extracellular signal-regulated kinase) pathway encodes information in its dynamics; the duration and frequency of Erk activity can specify distinct cell fates. To enable dynamic encoding, temporal information must be accurately transmitted from the plasma membrane to the nucleus. We used optogenetic profiling to show that both oncogenic B-Raf mutations and B-Raf inhibitors can cause corruption of this transmission, so that short pulses of input Ras activity are distorted into abnormally long Erk outputs. These changes can reshape downstream transcription and cell fates, resulting in improper decisions to proliferate. These findings illustrate how altered dynamic signal transmission properties, and not just constitutively increased signaling, can contribute to cell proliferation and perhaps cancer, and how optogenetic profiling can dissect mechanisms of signaling dysfunction in disease.

Optogenetic dissection of mitotic spindle positioning in vivo.

blue TULIP C. elegans in vivo Control of cytoskeleton / cell motility / cell shape Cell cycle control
Elife, 15 Aug 2018 DOI: 10.7554/elife.38198 Link to full text
Abstract: The position of the mitotic spindle determines the plane of cell cleavage, and thereby daughter cell location, size, and content. Spindle positioning is driven by dynein-mediated pulling forces exerted on astral microtubules, which requires an evolutionarily conserved complex of Gα-GDP, GPR-1/2Pins/LGN, and LIN-5Mud/NuMA proteins. To examine individual functions of the complex components, we developed a genetic strategy for light-controlled localization of endogenous proteins in C. elegans embryos. By replacing Gα and GPR-1/2 with a light-inducible membrane anchor, we demonstrate that Gα-GDP, Gα-GTP, and GPR-1/2 are not required for pulling-force generation. In the absence of Gα and GPR-1/2, cortical recruitment of LIN-5, but not dynein itself, induced high pulling forces. The light-controlled localization of LIN-5 overruled normal cell-cycle and polarity regulation and provided experimental control over the spindle and cell-cleavage plane. Our results define Gα∙GDP-GPR-1/2 Pins/LGN as a regulatable membrane anchor, and LIN-5Mud/NuMA as a potent activator of dynein-dependent spindle-positioning forces.

Regulation of cell cycle progression by cell-cell and cell-matrix forces.

blue CRY2/CIB1 MDCK Control of cytoskeleton / cell motility / cell shape Cell cycle control
Nat Cell Biol, 25 May 2018 DOI: 10.1038/s41556-018-0107-2 Link to full text
Abstract: It has long been proposed that the cell cycle is regulated by physical forces at the cell-cell and cell-extracellular matrix (ECM) interfaces1-12. However, the evolution of these forces during the cycle has never been measured in a tissue, and whether this evolution affects cell cycle progression is unknown. Here, we quantified cell-cell tension and cell-ECM traction throughout the complete cycle of a large cell population in a growing epithelium. These measurements unveil temporal mechanical patterns that span the entire cell cycle and regulate its duration, the G1-S transition and mitotic rounding. Cells subjected to higher intercellular tension exhibit a higher probability to transition from G1 to S, as well as shorter G1 and S-G2-M phases. Moreover, we show that tension and mechanical energy are better predictors of the duration of G1 than measured geometric properties. Tension increases during the cell cycle but decreases 3 hours before mitosis. Using optogenetic control of contractility, we show that this tension drop favours mitotic rounding. Our results establish that cell cycle progression is regulated cooperatively by forces between the dividing cell and its neighbours.

Plasma Membrane Association but Not Midzone Recruitment of RhoGEF ECT2 Is Essential for Cytokinesis.

blue CRY2/CIB1 HeLa Cell cycle control
Cell Rep, 6 Dec 2016 DOI: 10.1016/j.celrep.2016.11.029 Link to full text
Abstract: Cytokinesis, the final step of cell division, begins with the formation of a cleavage furrow. How the mitotic spindle specifies the furrow at the equator in animal cells remains unknown. Current models propose that the concentration of the RhoGEF ECT2 at the spindle midzone and the equatorial plasma membrane directs furrow formation. Using chemical genetic and optogenetic tools, we demonstrate that the association of ECT2 with the plasma membrane during anaphase is required and sufficient for cytokinesis. Local membrane targeting of ECT2 leads to unilateral furrowing, highlighting the importance of local ECT2 activity. ECT2 mutations that prevent centralspindlin binding compromise concentration of ECT2 at the midzone and equatorial membrane but sustain cytokinesis. While the association of ECT2 with the plasma membrane is essential for cytokinesis, our data suggest that ECT2 recruitment to the spindle midzone is insufficient to account for equatorial furrowing and may act redundantly with yet-uncharacterized signals.

Optogenetic clustering of CNK1 reveals mechanistic insights in RAF and AKT signalling controlling cell fate decisions.

blue CRY2/CRY2 C2C12 HEK293T HeLa MCF7 Signaling cascade control Cell cycle control Cell differentiation
Sci Rep, 30 Nov 2016 DOI: 10.1038/srep38155 Link to full text
Abstract: Scaffold proteins such as the multidomain protein CNK1 orchestrate the signalling network by integrating and controlling the underlying pathways. Using an optogenetic approach to stimulate CNK1 uncoupled from upstream effectors, we identified selective clusters of CNK1 that either stimulate RAF-MEK-ERK or AKT signalling depending on the light intensity applied. OptoCNK1 implemented in MCF7 cells induces differentiation at low light intensity stimulating ERK activity whereas stimulation of AKT signalling by higher light intensity promotes cell proliferation. CNK1 clustering in response to increasing EGF concentrations revealed that CNK1 binds to RAF correlating with ERK activation at low EGF dose. At higher EGF dose active AKT binds to CNK1 and phosphorylates and inhibits RAF. Knockdown of CNK1 protects CNK1 from this AKT/RAF crosstalk. In C2 skeletal muscle cells CNK1 expression is induced with the onset of differentiation. Hence, AKT-bound CNK1 counteracts ERK stimulation in differentiated but not in proliferating cells. Ectopically expressed CNK1 facilitates C2 cell differentiation and knockdown of CNK1 impaired the transcriptional network underlying C2 cell differentiation. Thus, CNK1 expression, CNK1 clustering and the thereto related differential signalling processes decide on proliferation and differentiation in a cell type- and cell stage-dependent manner by orchestrating AKT and RAF signalling.

Local RhoA activation induces cytokinetic furrows independent of spindle position and cell cycle stage.

blue TULIP HeLa NIH/3T3 Control of cytoskeleton / cell motility / cell shape Cell cycle control
J Cell Biol, 13 Jun 2016 DOI: 10.1083/jcb.201603025 Link to full text
Abstract: The GTPase RhoA promotes contractile ring assembly and furrow ingression during cytokinesis. Although many factors that regulate RhoA during cytokinesis have been characterized, the spatiotemporal regulatory logic remains undefined. We have developed an optogenetic probe to gain tight spatial and temporal control of RhoA activity in mammalian cells and demonstrate that cytokinetic furrowing is primarily regulated at the level of RhoA activation. Light-mediated recruitment of a RhoGEF domain to the plasma membrane leads to rapid induction of RhoA activity, leading to assembly of cytokinetic furrows that partially ingress. Furthermore, furrow formation in response to RhoA activation is not temporally or spatially restricted. RhoA activation is sufficient to generate furrows at both the cell equator and cell poles, in both metaphase and anaphase. Remarkably, furrow formation can be initiated in rounded interphase cells, but not adherent cells. These results indicate that RhoA activation is sufficient to induce assembly of functional contractile rings and that cell rounding facilitates furrow formation.
Submit a new publication to our database