Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 25 of 33 results
1.

Optogenetic activators of apoptosis, necroptosis, and pyroptosis.

blue CRY2olig Caco-2 HaCaT HEK293T HeLa MCF7 RAW264.7 zebrafish in vivo Cell death
J Cell Biol, 14 Apr 2022 DOI: 10.1083/jcb.202109038 Link to full text
Abstract: Targeted and specific induction of cell death in an individual or groups of cells hold the potential for new insights into the response of tissues or organisms to different forms of death. Here, we report the development of optogenetically controlled cell death effectors (optoCDEs), a novel class of optogenetic tools that enables light-mediated induction of three types of programmed cell death (PCD)-apoptosis, pyroptosis, and necroptosis-using Arabidopsis thaliana photosensitive protein Cryptochrome-2. OptoCDEs enable a rapid and highly specific induction of PCD in human, mouse, and zebrafish cells and are suitable for a wide range of applications, such as sub-lethal cell death induction or precise elimination of single cells or cell populations in vitro and in vivo. As the proof-of-concept, we utilize optoCDEs to assess the differences in neighboring cell responses to apoptotic or necrotic PCD, revealing a new role for shingosine-1-phosphate signaling in regulating the efferocytosis of the apoptotic cell by epithelia.
2.

Gasdermin D pores are dynamically regulated by local phosphoinositide circuitry.

violet PhoCl HeLa Cell death
Nat Commun, 10 Jan 2022 DOI: 10.1038/s41467-021-27692-9 Link to full text
Abstract: Gasdermin D forms large, ~21 nm diameter pores in the plasma membrane to drive the cell death program pyroptosis. These pores are thought to be permanently open, and the resultant osmotic imbalance is thought to be highly damaging. Yet some cells mitigate and survive pore formation, suggesting an undiscovered layer of regulation over the function of these pores. However, no methods exist to directly reveal these mechanistic details. Here, we combine optogenetic tools, live cell fluorescence biosensing, and electrophysiology to demonstrate that gasdermin pores display phosphoinositide-dependent dynamics. We quantify repeated and fast opening-closing of these pores on the tens of seconds timescale, visualize the dynamic pore geometry, and identify the signaling that controls dynamic pore activity. The identification of this circuit allows pharmacological tuning of pyroptosis and control of inflammatory cytokine release by living cells.
3.

Gezielte Injektion von Effektoren durch Kontrolle der Proteindynamik.

blue iLID LOVTRAP Y. enterocolitica Cell death
BIOspektrum (Heidelb), 24 Nov 2021 DOI: 10.1007/s12268-021-1667-4 Link to full text
Abstract: The type III secretion system (T3SS) enables direct injection of bacterial effector proteins into eukaryotic cells. We found that the dynamic cytosolic interface of the system allows Yersinia enterocolitica to suppress premature secretion at low pH, ensuring rapid activation at the site of action. Exploiting this principle, we developed a light-controlled T3SS based on optogenetic interaction switches, which provides unprecedented spatiotemporal control of protein secretion and translocation.
4.

Microtubule disassembly by caspases is the rate-limiting step of cell extrusion

blue CRY2/CIB1 D. melanogaster in vivo Schneider 2 Control of cytoskeleton / cell motility / cell shape Cell death
bioRxiv, 15 Oct 2021 DOI: 10.1101/2021.10.15.464503 Link to full text
Abstract: Epithelial cell death is essential for tissue homeostasis, robustness and morphogenesis. The expulsion of epithelial cells following caspase activation requires well-orchestrated remodeling steps leading to cell elimination without impairing tissue sealing. While numerous studies have provided insight about the process of cell extrusion, we still know very little about the relationship between caspase activation and the remodeling steps of cell extrusion. Moreover, most studies of cell extrusion focused on the regulation of actomyosin and steps leading to the formation of a supracellular contractile ring. However, the contribution of other cellular factors to cell extrusion has been poorly explored. Using the Drosophila pupal notum, a single layer epithelium where most extrusion events are caspase-dependent, we first showed that the initiation of cell extrusion and apical constriction are surprisingly not associated with the modulation of actomyosin concentration/dynamics. Instead, cell apical constriction is initiated by the disassembly of a medio-apical mesh of microtubules which is driven by effector caspases. We confirmed that local and rapid increase/decrease of microtubules is sufficient to respectively expand/constrict cell apical area. Importantly, the depletion of microtubules is sufficient to bypass the requirement of caspases for cell extrusion. This study shows that microtubules disassembly by caspases is a key rate-limiting steps of extrusion, and outlines a more general function of microtubules in epithelial cell shape stabilisation.
5.

Optogenetic activators of apoptosis, necroptosis and pyroptosis for probing cell death dynamics and bystander cell responses.

blue CRY2olig Caco-2 HaCaT HeLa MCF7 RAW264.7 Cell death
bioRxiv, 31 Aug 2021 DOI: 10.1101/2021.08.31.458313 Link to full text
Abstract: Targeted and specific induction of cell death in individual or groups of cells holds the potential for new insights into the response of tissues or organisms to different forms of death. Here we report the development of optogenetically-controlled cell death effectors (optoCDEs), a novel class of optogenetic tools that enables light-mediated induction of three types of programmed cell death (PCD) – apoptosis, pyroptosis and necroptosis – using Arabidopsis thaliana photosensitive protein Cryptochrome2. OptoCDEs enable rapid and highly specific induction of PCD in human, mouse and zebrafish cells and are suitable for a wide range of applications, such as sub-lethal cell death induction or precise elimination of single cells or cell populations in vitro and in vivo. As the proof-of-concept, we utilize optoCDEs to assess the differences in the neighboring cell response to apoptotic or necrotic PCD, revealing a new role for shingosine-1-phosphate signaling in regulating the efferocytosis of apoptotic cell by epithelia.
6.

Collective ERK/Akt activity waves orchestrate epithelial homeostasis by driving apoptosis-induced survival.

blue CRY2/CIB1 CRY2/CRY2 MCF10A Signaling cascade control Cell death
Dev Cell, 2 Jun 2021 DOI: 10.1016/j.devcel.2021.05.007 Link to full text
Abstract: Cell death events continuously challenge epithelial barrier function yet are crucial to eliminate old or critically damaged cells. How such apoptotic events are spatio-temporally organized to maintain epithelial homeostasis remains unclear. We observe waves of extracellular-signal-regulated kinase (ERK) and AKT serine/threonine kinase (Akt) activity pulses that originate from apoptotic cells and propagate radially to healthy surrounding cells. This requires epidermal growth factor receptor (EGFR) and matrix metalloproteinase (MMP) signaling. At the single-cell level, ERK/Akt waves act as spatial survival signals that locally protect cells in the vicinity of the epithelial injury from apoptosis for a period of 3-4 h. At the cell population level, ERK/Akt waves maintain epithelial homeostasis (EH) in response to mild or intense environmental insults. Disruption of this spatial signaling system results in the inability of a model epithelial tissue to ensure barrier function in response to environmental insults.
7.

Robustness of epithelial sealing is an emerging property of local ERK feedback driven by cell elimination.

blue CRY2/CRY2 D. melanogaster in vivo Signaling cascade control Cell death
Dev Cell, 28 May 2021 DOI: 10.1016/j.devcel.2021.05.006 Link to full text
Abstract: What regulates the spatiotemporal distribution of cell elimination in tissues remains largely unknown. This is particularly relevant for epithelia with high rates of cell elimination where simultaneous death of neighboring cells could impair epithelial sealing. Here, using the Drosophila pupal notum (a single-layer epithelium) and a new optogenetic tool to trigger caspase activation and cell extrusion, we first showed that death of clusters of at least three cells impaired epithelial sealing; yet, such clusters were almost never observed in vivo. Accordingly, statistical analysis and simulations of cell death distribution highlighted a transient and local protective phase occurring near every cell death. This protection is driven by a transient activation of ERK in cells neighboring extruding cells, which inhibits caspase activation and prevents elimination of cells in clusters. This suggests that the robustness of epithelia with high rates of cell elimination is an emerging property of local ERK feedback.
8.

Optogenetic Control of Non-Apoptotic Cell Death.

blue cpLOV2 cpLOVTRAP CRY2/CRY2 LOVTRAP 786-O B16-F0 E. coli HEK293T HeLa Jurkat Signaling cascade control Cell death
Adv Biology, 6 May 2021 DOI: 10.1002/advs.202100424 Link to full text
Abstract: Herein, a set of optogenetic tools (designated LiPOP) that enable photoswitchable necroptosis and pyroptosis in live cells with varying kinetics, is introduced. The LiPOP tools allow reconstruction of the key molecular steps involved in these two non-apoptotic cell death pathways by harnessing the power of light. Further, the use of LiPOPs coupled with upconversion nanoparticles or bioluminescence is demonstrated to achieve wireless optogenetic or chemo-optogenetic killing of cancer cells in multiple mouse tumor models. LiPOPs can trigger necroptotic and pyroptotic cell death in cultured prokaryotic or eukaryotic cells and in living animals, and set the stage for studying the role of non-apoptotic cell death pathways during microbial infection and anti-tumor immunity.
9.

Design of Smart Antibody Mimetics with Photosensitive Switches.

blue AsLOV2 HEK293T HeLa Transgene expression Cell death Nucleic acid editing
Adv Biol (Weinh), 5 Feb 2021 DOI: 10.1002/adbi.202000541 Link to full text
Abstract: As two prominent examples of intracellular single-domain antibodies or antibody mimetics derived from synthetic protein scaffolds, monobodies and nanobodies are gaining wide applications in cell biology, structural biology, synthetic immunology, and theranostics. Herein, a generally applicable method to engineer light-controllable monobodies and nanobodies, designated as moonbody and sunbody, respectively, is introduced. These engineered antibody-like modular domains enable rapid and reversible antibody-antigen recognition by utilizing light. By the paralleled insertion of two light-oxygen-voltage domain 2 modules into a single sunbody and the use of bivalent sunbodies, the range of dynamic changes of photoswitchable sunbodies is substantially enhanced. Furthermore, the use of moonbodies or sunbodies to precisely control protein degradation, gene transcription, and base editing by harnessing the power of light is demonstrated.
10.

Improved Photocleavable Proteins with Faster and More Efficient Dissociation.

violet PhoCl HeLa Transgene expression Cell death
bioRxiv, 10 Dec 2020 DOI: 10.1101/2020.12.10.419556 Link to full text
Abstract: The photocleavable protein (PhoCl) is a green-to-red photoconvertible fluorescent protein that, when illuminated with violet light, undergoes main chain cleavage followed by spontaneous dissociation of the resulting fragments. The first generation PhoCl (PhoCl1) exhibited a relative slow rate of dissociation, potentially limiting its utilities for optogenetic control of cell physiology. In this work, we report the X-ray crystal structures of the PhoCl1 green state, red state, and cleaved empty barrel. Using structure-guided engineering and directed evolution, we have developed PhoCl2c with higher contrast ratio and PhoCl2f with faster dissociation. We characterized the performance of these new variants as purified proteins and expressed in cultured cells. Our results demonstrate that PhoCl2 variants exhibit faster and more efficient dissociation, which should enable improved optogenetic manipulations of protein localization and protein-protein interactions in living cells.
11.

Spatio-temporal Control of ERK Pulse Frequency Coordinates Fate Decisions during Mammary Acinar Morphogenesis.

blue CRY2/CIB1 CRY2/CRY2 MCF10A Signaling cascade control Cell differentiation Cell death
bioRxiv, 21 Nov 2020 DOI: 10.1101/2020.11.20.387167 Link to full text
Abstract: The signaling events controlling proliferation, survival, and apoptosis during mammary epithelial acinar morphogenesis remain poorly characterized. By imaging single-cell ERK activity dynamics in MCF10A acini, we find that these fates depend on the frequency of ERK pulses. High pulse frequency is observed during initial acinus growth, correlating with rapid cell motility. Subsequent decrease in motility correlates with lower ERK pulse frequency and quiescence. Later, during lumen formation, coordinated ERK waves emerge across multiple cells of an acinus, correlating with high and low ERK pulse frequency in outer surviving and inner dying cells respectively. A PIK3CA H1047R mutation, commonly observed in breast cancer, increases ERK pulse frequency and inner cell survival, causing loss of lumen formation. Optogenetic entrainment of ERK pulses causally connects high ERK pulse frequency with inner cell survival. Thus, fate decisions during acinar morphogenesis are fine-tuned by different spatio-temporal coordination modalities of ERK pulse frequency.
12.

Targeted cell ablation in zebrafish using optogenetic transcriptional control.

blue VVD zebrafish in vivo Transgene expression Cell death
Development, 17 Jun 2020 DOI: 10.1242/dev.183640 Link to full text
Abstract: Cell ablation is a powerful method for elucidating the contributions of individual cell populations to embryonic development and tissue regeneration. Targeted cell loss in whole organisms has been typically achieved through expression of a cytotoxic or prodrug-activating gene product in the cell type of interest. This approach depends on the availability of tissue-specific promoters, and it does not allow further spatial selectivity within the promoter-defined region(s). To address this limitation, we have used the light-inducible GAVPO transactivator in combination with two genetically encoded cell-ablation technologies: the nitroreductase/nitrofuran system and a cytotoxic variant of the M2 ion channel. Our studies establish ablative methods that provide the tissue specificity afforded by cis-regulatory elements and the conditionality of optogenetics. Our studies also demonstrate differences between the nitroreductase and M2 systems that influence their efficacies for specific applications. Using this integrative approach, we have ablated cells in zebrafish embryos with both spatial and temporal control.
13.

LITESEC-T3SS - Light-controlled protein delivery into eukaryotic cells with high spatial and temporal resolution.

blue iLID LOVTRAP HEp-2 Y. enterocolitica Cell death
Nat Commun, 13 May 2020 DOI: 10.1038/s41467-020-16169-w Link to full text
Abstract: Many bacteria employ a type III secretion system (T3SS) injectisome to translocate proteins into eukaryotic host cells. Although the T3SS can efficiently export heterologous cargo proteins, a lack of target cell specificity currently limits its application in biotechnology and healthcare. In this study, we exploit the dynamic nature of the T3SS to govern its activity. Using optogenetic interaction switches to control the availability of the dynamic cytosolic T3SS component SctQ, T3SS-dependent effector secretion can be regulated by light. The resulting system, LITESEC-T3SS (Light-induced translocation of effectors through sequestration of endogenous components of the T3SS), allows rapid, specific, and reversible activation or deactivation of the T3SS upon illumination. We demonstrate the light-regulated translocation of heterologous reporter proteins, and induction of apoptosis in cultured eukaryotic cells. LITESEC-T3SS constitutes a new method to control protein secretion and translocation into eukaryotic host cells with unparalleled spatial and temporal resolution.
14.

A combination of LightOn gene expression system and tumor microenvironment-responsive nanoparticle delivery system for targeted breast cancer therapy.

blue VVD 4T1 mouse in vivo Transgene expression Cell death
Acta Pharm Sin B, 27 Apr 2020 DOI: 10.1016/j.apsb.2020.04.010 Link to full text
Abstract: A light-switchable transgene system called LightOn gene expression system could regulate gene expression with a high on/off ratio under blue light, and have great potential for spatiotemporally controllable gene expression. We developed a nanoparticle drug delivery system (NDDS) to achieve tumor microenvironment-responsive and targeted delivery of diphtheria toxin A (DTA) fragment-encoded plasmids to tumor sites. The expression of DTA was induced by exposure to blue light. Nanoparticles composed of polyethylenimine and vitamin E succinate linked by a disulfide bond, and PEGylated hyaluronic acid modified with RGD peptide, accumulated in tumor tissues and were actively internalized into 4T1 cells via dual targeting to CD44 and αvβ3 receptors. The LightOn gene expression system was able to control target protein expression through regulation of the intensity or duration of blue light exposure. In vitro studies showed that light-induced DTA expression reduced 4T1 cell viability and induced apoptosis. Furthermore, the LightOn gene expression system enabled spatiotemporal control of the expression of DTA in a mouse 4T1 tumor xenograft model, which resulted in excellent antitumor effects, reduced tumor angiogenesis, and no systemic toxicity. The combination of the LightOn gene expression system and NDDS may be an effective strategy for treatment of breast cancer.
15.

Tunable light and drug induced depletion of target proteins.

blue CRY2/CIB1 iLID BHK-21 C. elegans in vivo HeLa Cell death
Nat Commun, 16 Jan 2020 DOI: 10.1038/s41467-019-14160-8 Link to full text
Abstract: Biological processes in development and disease are controlled by the abundance, localization and modification of cellular proteins. We have developed versatile tools based on recombinant E3 ubiquitin ligases that are controlled by light or drug induced heterodimerization for nanobody or DARPin targeted depletion of endogenous proteins in cells and organisms. We use this rapid, tunable and reversible protein depletion for functional studies of essential proteins like PCNA in DNA repair and to investigate the role of CED-3 in apoptosis during Caenorhabditis elegans development. These independent tools can be combined for spatial and temporal depletion of different sets of proteins, can help to distinguish immediate cellular responses from long-term adaptation effects and can facilitate the exploration of complex networks.
16.

Imaging of Morphological and Biochemical Hallmarks of Apoptosis with Optimized Optogenetic Actuators.

blue CRY2/CIB1 HEK293T HeLa Neuro-2a Cell death
PLoS ONE, 3 Oct 2019 DOI: 10.1074/jbc.ra119.009141 Link to full text
Abstract: The creation of optogenetic switches for specific activation of cell-death pathways can provide insights into apoptosis and could also form a basis for non-invasive, next-generation therapeutic strategies. Previous work has demonstrated that cryptochrome 2 (Cry2)/CIB, a blue light–activated protein–protein dimerization module from the plant Arabidopsis thaliana together with BCL2-associated X apoptosis regulator (BAX), an outer mitochondrial membrane (OMM)-targeting pro-apoptotic protein, can be used for light-mediated initiation of mitochondrial outer-membrane permeabilization (MOMP) and downstream apoptosis. In this work, we further developed the original light-activated Cry2–BAX system (henceforth referred to as OptoBAX) by improving the photophysical properties and light-independent interactions of this optogenetic switch. The resulting optogenetic constructs significantly reduced the frequency of light exposure required for the membrane permeabilization activation and also decreased dark-state cytotoxicity. We used OptoBAX in a series of experiments in Neuro-2a and HEK293T cells to measure the timing of the dramatic morphological and biochemical changes occurring in cells after light-induced MOMP. In these experiments, we used OptoBAX in tandem with fluorescent reporters for imaging key events in early apoptosis, including membrane inversion, caspase cleavage, and actin redistribution. We then used these data to construct a timeline of biochemical and morphological events in early apoptosis, demonstrating a direct link between MOMP-induced redistribution of actin and apoptosis progression. In summary, we have created a next-generation Cry2/CIB–BAX system requiring less frequent light stimulation and established a timeline of critical apoptotic events, providing detailed insights into key steps in early apoptosis.
17.

Engineering Strategy and Vector Library for the Rapid Generation of Modular Light-Controlled Protein-Protein Interactions.

blue CrLOV1 CRY2/CRY2 VfAU1-LOV VVD HEK293 Cell death
J Mol Biol, 29 May 2019 DOI: 10.1016/j.jmb.2019.05.033 Link to full text
Abstract: Optogenetics enables the spatio-temporally precise control of cell and animal behavior. Many optogenetic tools are driven by light-controlled protein-protein interactions (PPIs) that are repurposed from natural light-sensitive domains (LSDs). Applying light-controlled PPIs to new target proteins is challenging because it is difficult to predict which of the many available LSDs, if any, will yield robust light regulation. As a consequence, fusion protein libraries need to be prepared and tested, but methods and platforms to facilitate this process are currently not available. Here, we developed a genetic engineering strategy and vector library for the rapid generation of light-controlled PPIs. The strategy permits fusing a target protein to multiple LSDs efficiently and in two orientations. The public and expandable library contains 29 vectors with blue, green or red light-responsive LSDs, many of which have been previously applied ex vivo and in vivo. We demonstrate the versatility of the approach and the necessity for sampling LSDs by generating light-activated caspase-9 (casp9) enzymes. Collectively, this work provides a new resource for optical regulation of a broad range of target proteins in cell and developmental biology.
18.

Dual-controlled optogenetic system for the rapid down-regulation of protein levels in mammalian cells.

blue AsLOV2 EL222 CHO-K1 Cos-7 HEK293 HEK293T HeLa isolated MEFs NIH/3T3 Cell death
Sci Rep, 9 Oct 2018 DOI: 10.1038/s41598-018-32929-7 Link to full text
Abstract: Optogenetic switches are emerging molecular tools for studying cellular processes as they offer higher spatiotemporal and quantitative precision than classical, chemical-based switches. Light-controllable gene expression systems designed to upregulate protein expression levels meanwhile show performances superior to their chemical-based counterparts. However, systems to reduce protein levels with similar efficiency are lagging behind. Here, we present a novel two-component, blue light-responsive optogenetic OFF switch (‘Blue-OFF’), which enables a rapid and quantitative down-regulation of a protein upon illumination. Blue-OFF combines the first light responsive repressor KRAB-EL222 with the protein degradation module B-LID (blue light-inducible degradation domain) to simultaneously control gene expression and protein stability with a single wavelength. Blue-OFF thus outperforms current optogenetic systems for controlling protein levels. The system is described by a mathematical model which aids in the choice of experimental conditions such as light intensity and illumination regime to obtain the desired outcome. This approach represents an advancement of dual-controlled optogenetic systems in which multiple photosensory modules operate synergistically. As exemplified here for the control of apoptosis in mammalian cell culture, the approach opens up novel perspectives in fundamental research and applications such as tissue engineering.
19.

Functionally asymmetric motor neurons contribute to coordinating locomotion of Caenorhabditis elegans.

blue miniSOG C. elegans in vivo Cell death
Elife, 11 Sep 2018 DOI: 10.7554/elife.34997 Link to full text
Abstract: Locomotion circuits developed in simple animals, and circuit motifs further evolved in higher animals. To understand locomotion circuit motifs, they must be characterized in many models. The nematode Caenorhabditis elegans possesses one of the best-studied circuits for undulatory movement. Yet, for 1/6th of the cholinergic motor neurons (MNs), the AS MNs, functional information is unavailable. Ventral nerve cord (VNC) MNs coordinate undulations, in small circuits of complementary neurons innervating opposing muscles. AS MNs differ, as they innervate muscles and other MNs asymmetrically, without complementary partners. We characterized AS MNs by optogenetic, behavioral and imaging analyses. They generate asymmetric muscle activation, enabling navigation, and contribute to coordination of dorso-ventral undulation as well as anterio-posterior bending wave propagation. AS MN activity correlated with forward and backward locomotion, and they functionally connect to premotor interneurons (PINs) for both locomotion regimes. Electrical feedback from AS MNs via gap junctions may affect only backward PINs.
20.

A light-controlled cell lysis system in bacteria.

blue YtvA E. coli Transgene expression Cell death
J Ind Microbiol Biotechnol, 8 May 2018 DOI: 10.1007/s10295-018-2034-4 Link to full text
Abstract: Intracellular products (e.g., insulin), which are obtained through cell lysis, take up a big share of the biotech industry. It is often time-consuming, laborious, and environment-unfriendly to disrupt bacterial cells with traditional methods. In this study, we developed a molecular device for controlling cell lysis with light. We showed that intracellular expression of a single lysin protein was sufficient for efficient bacterial cell lysis. By placing the lysin-encoding gene under the control of an improved light-controlled system, we successfully controlled cell lysis by switching on/off light: OD600 of the Escherichia coli cell culture was decreased by twofold when the light-controlled system was activated under dark condition. We anticipate that our work would not only pave the way for cell lysis through a convenient biological way in fermentation industry, but also provide a paradigm for applying the light-controlled system in other fields of biotech industry.
21.

Descending pathway facilitates undulatory wave propagation in Caenorhabditis elegans through gap junctions.

blue miniSOG C. elegans in vivo Cell death
Proc Natl Acad Sci USA, 23 Apr 2018 DOI: 10.1073/pnas.1717022115 Link to full text
Abstract: Descending signals from the brain play critical roles in controlling and modulating locomotion kinematics. In the Caenorhabditis elegans nervous system, descending AVB premotor interneurons exclusively form gap junctions with the B-type motor neurons that execute forward locomotion. We combined genetic analysis, optogenetic manipulation, calcium imaging, and computational modeling to elucidate the function of AVB-B gap junctions during forward locomotion. First, we found that some B-type motor neurons generate rhythmic activity, constituting distributed oscillators. Second, AVB premotor interneurons use their electric inputs to drive bifurcation of B-type motor neuron dynamics, triggering their transition from stationary to oscillatory activity. Third, proprioceptive couplings between neighboring B-type motor neurons entrain the frequency of body oscillators, forcing coherent bending wave propagation. Despite substantial anatomical differences between the motor circuits of C. elegans and higher model organisms, converging principles govern coordinated locomotion.
22.

Near-Infrared Light Triggered Upconversion Optogenetic Nanosystem for Cancer Therapy.

blue CRY2/CIB1 HeLa mouse in vivo Cell death
ACS Nano, 30 Oct 2017 DOI: 10.1021/acsnano.7b06395 Link to full text
Abstract: In vivo the application of optogenetic manipulation in deep tissue is seriously obstructed by the limited penetration depth of visible light that is continually applied to activate a photoactuator. Herein, we designed a versatile upconversion optogenetic nanosystem based on a blue-light-mediated heterodimerization module and rare-earth upconversion nanoparticles (UCNs). The UCNs worked as a nanotransducer to convert external deep-tissue-penetrating near-infrared (NIR) light to local blue light to noninvasively activate photoreceptors for optogenetic manipulation in vivo. In this, we demonstrated that deeply penetrating NIR light could be used to control the apoptotic signaling pathway of cancer cells in both mammalian cells and mice by UCNs. We believe that this interesting NIR-light-responsive upconversion optogenetic nanotechnology has significant application potentials for both basic research and clinical applications in vivo.
23.

Engineering a light-activated caspase-3 for precise ablation of neurons in vivo.

blue AsLOV2 D. melanogaster in vivo in vitro Cell death Developmental processes
Proc Natl Acad Sci USA, 11 Sep 2017 DOI: 10.1073/pnas.1705064114 Link to full text
Abstract: The circuitry of the brain is characterized by cell heterogeneity, sprawling cellular anatomy, and astonishingly complex patterns of connectivity. Determining how complex neural circuits control behavior is a major challenge that is often approached using surgical, chemical, or transgenic approaches to ablate neurons. However, all these approaches suffer from a lack of precise spatial and temporal control. This drawback would be overcome if cellular ablation could be controlled with light. Cells are naturally and cleanly ablated through apoptosis due to the terminal activation of caspases. Here, we describe the engineering of a light-activated human caspase-3 (Caspase-LOV) by exploiting its natural spring-loaded activation mechanism through rational insertion of the light-sensitive LOV2 domain that expands upon illumination. We apply the light-activated caspase (Caspase-LOV) to study neurodegeneration in larval and adult Drosophila Using the tissue-specific expression system (UAS)-GAL4, we express Caspase-LOV specifically in three neuronal cell types: retinal, sensory, and motor neurons. Illumination of whole flies or specific tissues containing Caspase-LOV-induced cell death and allowed us to follow the time course and sequence of neurodegenerative events. For example, we find that global synchronous activation of caspase-3 drives degeneration with a different time-course and extent in sensory versus motor neurons. We believe the Caspase-LOV tool we engineered will have many other uses for neurobiologists and others for specific temporal and spatial ablation of cells in complex organisms.
24.

Precision Optogenetic Tool for Selective Single- and Multiple-Cell Ablation in a Live Animal Model System.

blue miniSOG D. melanogaster in vivo HEK293T in vitro Cell death Developmental processes
Cell Chem Biol, 5 Jan 2017 DOI: 10.1016/j.chembiol.2016.12.010 Link to full text
Abstract: Cell ablation is a strategy to study cell lineage and function during development. Optogenetic methods are an important cell-ablation approach, and we have previously developed a mini singlet oxygen generator (miniSOG) tool that works in the living Caenorhabditis elegans. Here, we use directed evolution to generate miniSOG2, an improved tool for cell ablation via photogenerated reactive oxygen species. We apply miniSOG2 to a far more complex model animal system, Drosophila melanogaster, and demonstrate that it can be used to kill a single neuron in a Drosophila larva. In addition, miniSOG2 is able to photoablate a small group of cells in one of the larval wing imaginal discs, resulting in an adult with one incomplete and one normal wing. We expect miniSOG2 to be a useful optogenetic tool for precision cell ablation at a desired developmental time point in live animals, thus opening a new window into cell origin, fate and function, tissue regeneration, and developmental biology.
25.

Lysosome-associated miniSOG as a photosensitizer for mammalian cells.

blue miniSOG HeLa Cell death
BioTechniques, 1 Aug 2016 DOI: 10.2144/000114445 Link to full text
Abstract: Genetically encoded photosensitizers represent a promising optogenetic tool for the induction of light-controlled oxidative stress strictly localized to a selected intracellular compartment. Here we tested the phototoxic effects of the flavin-containing phototoxic protein miniSOG targeted to the cytoplasmic surfaces of late endosomes and lysosomes by fusion with Rab7. In HeLa Kyoto cells stably expressing miniSOG-Rab7, we demonstrated a high level of cell death upon blue-light illumination. Pepstatin A completely abolished phototoxicity of miniSOG-Rab7, showing a key role for cathepsin D in this model. Using a far-red fluorescence sensor for caspase-3, we observed caspase-3 activation during miniSOG-Rab7-mediated cell death. We conclude that upon illumination, miniSOG-Rab7 induces lysosomal membrane permeabilization (LMP) and leakage of cathepsins into the cytosol, resulting in caspase-dependent apoptosis.
Submit a new publication to our database