Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 25 of 28 results
1.

Spatio-temporal Control of ERK Pulse Frequency Coordinates Fate Decisions during Mammary Acinar Morphogenesis.

blue CRY2/CIB1 CRY2/CRY2 MCF10A Signaling cascade control Cell differentiation Cell death
bioRxiv, 21 Nov 2020 DOI: 10.1101/2020.11.20.387167 Link to full text
Abstract: The signaling events controlling proliferation, survival, and apoptosis during mammary epithelial acinar morphogenesis remain poorly characterized. By imaging single-cell ERK activity dynamics in MCF10A acini, we find that these fates depend on the frequency of ERK pulses. High pulse frequency is observed during initial acinus growth, correlating with rapid cell motility. Subsequent decrease in motility correlates with lower ERK pulse frequency and quiescence. Later, during lumen formation, coordinated ERK waves emerge across multiple cells of an acinus, correlating with high and low ERK pulse frequency in outer surviving and inner dying cells respectively. A PIK3CA H1047R mutation, commonly observed in breast cancer, increases ERK pulse frequency and inner cell survival, causing loss of lumen formation. Optogenetic entrainment of ERK pulses causally connects high ERK pulse frequency with inner cell survival. Thus, fate decisions during acinar morphogenesis are fine-tuned by different spatio-temporal coordination modalities of ERK pulse frequency.
2.

β-Catenin signaling dynamics regulate cell fate in differentiating neural stem cells.

blue CRY2/CRY2 rat hippocampal NSCs Cell differentiation
Proc Natl Acad Sci U S A, 2 Nov 2020 DOI: 10.1073/pnas.2008509117 Link to full text
Abstract: Stem cells undergo differentiation in complex and dynamic environments wherein instructive signals fluctuate on various timescales. Thus, cells must be equipped to properly respond to the timing of signals, for example, to distinguish sustained signaling from transient noise. However, how stem cells respond to dynamic variations in differentiation cues is not well characterized. Here, we use optogenetic activation of β-catenin signaling to probe the dynamic responses of differentiating adult neural stem cells (NSCs). We discover that, while elevated, sustained β-catenin activation sequentially promotes proliferation and differentiation, transient β-catenin induces apoptosis. Genetic perturbations revealed that the neurogenic/apoptotic fate switch was mediated through cell-cycle regulation by Growth Arrest and DNA Damage 45 gamma (Gadd45γ). Our results thus reveal a role for β-catenin dynamics in NSC fate decisions and may suggest a role for signal timing to minimize cell-fate errors, analogous to kinetic proofreading of stem-cell differentiation.
3.

Optogenetically Controlled TrkA Activity Improves the Regenerative Capacity of Hair-Follicle-Derived Stem Cells to Differentiate into Neurons and Glia.

blue VfAU1-LOV hair-follicle-derived stem cells Cell differentiation
Adv Biosyst, 13 Sep 2020 DOI: 10.1002/adbi.202000134 Link to full text
Abstract: Hair-follicle-derived stem cells (HSCs) originating from the bulge region of the mouse vibrissa hair follicle are able to differentiate into neuronal and glial lineage cells. The tropomyosin receptor kinase A (TrkA) receptor that is expressed on these cells plays key roles in mediating the survival and differentiation of neural progenitors as well as in the regulation of the growth and regeneration of different neural systems. In this study, the OptoTrkA system is introduced, which is able to stimulate TrkA activity via blue-light illumination in HSCs. This allows to determine whether TrkA signaling is capable of influencing the proliferation, migration, and neural differentiation of these somatic stem cells. It is found that OptoTrkA is able to activate downstream molecules such as ERK and AKT with blue-light illumination, and subsequently able to terminate this kinase activity in the dark. HSCs with OptoTrkA activity show an increased ability for proliferation and migration and also exhibited accelerated neuronal and glial cell differentiation. These findings suggest that the precise control of TrkA activity using optogenetic tools is a viable strategy for the regeneration of neurons from HSCs, and also provides a novel insight into the clinical application of optogenetic tools in cell-transplantation therapy.
4.

Engineered Illumination Devices for Optogenetic Control of Cellular Signaling Dynamics.

blue CRY2/CRY2 hESCs Signaling cascade control Cell differentiation
Cell Rep, 9 Jun 2020 DOI: 10.1016/j.celrep.2020.107737 Link to full text
Abstract: Spatially and temporally varying patterns of morphogen signals during development drive cell fate specification at the proper location and time. However, current in vitro methods typically do not allow for precise, dynamic spatiotemporal control of morphogen signaling and are thus insufficient to readily study how morphogen dynamics affect cell behavior. Here, we show that optogenetic Wnt/β-catenin pathway activation can be controlled at user-defined intensities, temporal sequences, and spatial patterns using engineered illumination devices for optogenetic photostimulation and light activation at variable amplitudes (LAVA). By patterning human embryonic stem cell (hESC) cultures with varying light intensities, LAVA devices enabled dose-responsive control of optoWnt activation and Brachyury expression. Furthermore, time-varying and spatially localized patterns of light revealed tissue patterning that models the embryonic presentation of Wnt signals in vitro. LAVA devices thus provide a low-cost, user-friendly method for high-throughput and spatiotemporal optogenetic control of cell signaling for applications in developmental and cell biology.
5.

A Generalizable Optogenetic Strategy to Regulate Receptor Tyrosine Kinases during Vertebrate Embryonic Development.

blue CRY2/CIB1 VfAU1-LOV HEK293T PC-12 Xenopus in vivo Signaling cascade control Cell differentiation Developmental processes
J Mol Biol, 8 Apr 2020 DOI: 10.1016/j.jmb.2020.03.032 Link to full text
Abstract: Ligand-independent activation of receptor tyrosine kinases (RTKs) allows for dissecting out the receptor-specific signaling outcomes from the pleiotropic effects of the ligands. In this regard, RTK intracellular domains (ICD) are of interest due to their ability to recapitulate signaling activity in a ligand-independent manner when fused to chemical and optical dimerizing domains. A common strategy for synthetic activation of RTKs involves membrane tethering of dimerizer-RTK ICD fusions. Depending on the intrinsic signaling capacity, however, this approach could entail undesirable baseline signaling activity in the absence of stimulus, thereby diminishing the system's sensitivity. Here, we observed toxicity in early Xenopus laevis embryos when using such a conventional optogenetic design for the fibroblast growth factor receptor (FGFR). To surpass this challenge, we developed a cytoplasm-to-membrane translocation approach, where FGFR ICD is recruited from the cytoplasm to the plasma membrane by light, followed by its subsequent activation via homo-association. This strategy results in the optical activation of FGFR with low background activity and high sensitivity, which allows for the light-mediated formation of ectopic tail-like structure in developing Xenopus laevis embryos. We further generalized this strategy by developing optogenetic platforms to control three neurotrophic tropomyosin receptor kinases, TrkA, TrkB, and TrkC. We envision that these ligand-independent optogenetic RTKs will provide useful toolsets for the delineation of signaling sub-circuits in developing vertebrate embryos.
6.

An Optogenetic Method to Study Signal Transduction in Intestinal StemCell Homeostasis.

blue CRY2/CRY2 D. melanogaster in vivo Signaling cascade control Cell differentiation
J Mol Biol, 19 Mar 2020 DOI: 10.1016/j.jmb.2020.03.019 Link to full text
Abstract: Homeostasis in adult organs involves replacement of cells from a stem cell pool maintained in specialized niches regulated by extracellular signals. This cell-to-cell communication employs signal transduction pathways allowing cells to respond with a variety of behaviors. To study these cellular behaviors, signaling must be perturbed within tissues in precise patterns, a technique recently made possible by the development of optogenetic tools. We developed tools to study signal transduction in vivo in an adult fly midgut stem cell model where signaling was regulated by the application of light. Activation was achieved by clustering of membrane receptors EGFR and Toll, while inactivation was achieved by clustering the downstream activators ERK/Rolled and NFκB/Dorsal in the cytoplasm, preventing nuclear translocation and transcriptional activation. We show that both pathways contribute to stem and transit amplifying cell numbers and affect the lifespan of adult flies. We further present new approaches to overcome overexpression phenotypes and novel methods for the integration of optogenetics into the already-established genetic toolkit of Drosophila.
7.

Optical activation of TrkB receptors.

blue CRY2/CIB1 CRY2/CRY2 VfAU1-LOV NIH/3T3 PC-12 Signaling cascade control Cell differentiation Developmental processes
bioRxiv, 15 Dec 2019 DOI: 10.1101/2019.12.15.876722 Link to full text
Abstract: Brain-derived neurotrophic factor (BDNF), via activation of tropomyosin receptor kinase B (TrkB), plays a critical role in neuronal proliferation, differentiation, survival, and death. Dysregulation of TrkB signaling is implicated in neurodegenerative disorders and cancers. Precise activation of TrkB receptors with spatial and temporal resolution is greatly desired to study the dynamic nature of TrkB signaling and its role in related diseases. Here we develop different optogenetic approaches that use light to activate TrkB receptors. Utilizing the photosensitive protein Arabidopsis thaliana cryptochrome 2 (CRY2), the light-inducible homo-interaction of the intracellular domain of TrkB (iTrkB) in the cytosol or on the plasma membrane is able to induce the activation of downstream MAPK/ERK and PI3K/Akt signaling as well as the neurite outgrowth of PC12 cells. Moreover, we prove that such strategies are generalizable to other optical homo-dimerizers by demonstrating the optical TrkB activation based on the light-oxygen-voltage domain of aureochrome 1 from Vaucheria frigida. The results open up new possibilities of many other optical platforms to activate TrkB receptors to fulfill customized needs. By comparing all the different strategies, we find that the CRY2-integrated approach to achieve light-induced cell membrane recruitment and homo-interaction of iTrkB is most efficient in activating TrkB receptors. The optogenetic strategies presented are promising tools to investigate BDNF/TrkB signaling with tight spatial and temporal control.
8.

Optogenetic control of mesenchymal cell fate towards precise bone regeneration.

blue FKF1/GI HEK293 rat in vivo rat primary mesenchymal stem cells Transgene expression Cell differentiation
Theranostics, 18 Oct 2019 DOI: 10.7150/thno.36455 Link to full text
Abstract: Rationale: Spatial-temporal control of cell fate in vivo is of great importance for regenerative medicine. Currently, there remain no practical strategies to tune cell-fate spatial-temporally. Optogenetics is a biological technique that widely used to control cell activity in genetically defined neurons in a spatiotemporal-specific manner by light. In this study, optogenetics was repurposed for precise bone tissue regeneration. Methods: Lhx8 and BMP2 genes, which are considered as the master genes for mesenchymal stem cell proliferation and differentiation respectively, were recombined into a customized optogenetic control system. In the system, Lhx8 was constitutively expressed, while BMP2 together with shLhx8 expression was driven by blue light. Results: As expected, blue light induced BMP2 expression and inactivated Lhx8 expression in cells infected with the optogenetic control system. Optogenetic control of BMP2 and Lhx8 expression inversely regulates MSC fate in vitro. By animal study, we found that blue light could fine-tune the regeneration in vivo. Blue light illumination significantly promotes bone regeneration when the scaffold was loaded with MSCs infected with adeno-Lhx8, GI-Gal4DBD, LOV-VP16, and BMP2-shLhx8. Conclusions: Together, our study revealed that optogenetic control of the master genes for mesenchymal stem cell proliferation and differentiation would be such a candidate strategy for precise regenerative medicine.
9.

Repurposing protein degradation for optogenetic modulation of protein activities.

blue AsLOV2 HEK293T PC-12 Signaling cascade control Cell differentiation
ACS Synth Biol, 10 Oct 2019 DOI: 10.1021/acssynbio.9b00285 Link to full text
Abstract: Non-neuronal optogenetic approaches empower precise regulation of protein dynamics in live cells but often require target-specific protein engineering. To address this challenge, we developed a generalizable light-modulated protein stabilization system (GLIMPSe) to control intracellular protein level independent of its functionality. We applied GLIMPSe to control two distinct classes of proteins: mitogen-activated protein kinase phosphatase 3 (MKP3), a negative regulator of the extracellu-lar signal-regulated kinase (ERK) pathway, as well as a constitutively active form of MEK (CA MEK), a positive regulator of the same pathway. Kinetics study showed that light-induced protein stabilization could be achieved within 30 minutes of blue light stimulation. GLIMPSe enables target-independent optogenetic control of protein activities and therefore minimizes the systematic variation embedded within different photoactivatable proteins. Overall, GLIMPSe promises to achieve light-mediated post-translational stabilization of a wide array of target proteins in live cells.
10.

Optogenomic Interfaces: Bridging Biological Networks With the Electronic Digital World.

red PhyB/PIF6 human neural progenitor cells Transgene expression Cell differentiation
IEEE, 11 Jun 2019 DOI: 10.1109/jproc.2019.2916055 Link to full text
Abstract: The development of optical nano-bio interfaces is a fundamental step toward connecting biological networks and traditional electronic computing systems. Compared to conventional chemical and electrical nano-bio interfaces, the use of light as a mediator enables new type of interfaces with unprecedented spatial and temporal resolutions. In this paper, the state of the art and future research directions in optogenomic interfaces are discussed. Optogenomic interfaces are light-mediated nano-bio interfaces that allow the control of the genome, i.e., the genes and their interactions in the cell nucleus (and, thus, of all the cell functionalities) with (sub) cellular resolution and high temporal accuracy. Given its fundamental role in the process of cell development, the study is focused on the interactions with the fibroblast growth factor receptor 1 (FGFR1) gene and the integrative nuclear FGFR1 signaling (INFS) module in stem cells and in neuronal cells, whose control opens the door to transformative applications, including reconstructive medicine and cancer therapy. Three stages of optogenomic interfaces are described, ranging from already experimentally validated interfaces activating broad cellular responses and expressing individual genes to more advanced interfaces able to regulate and correct DNA topology, chromatin structure, and cellular development.
11.

Optogenetic control of Wnt signaling for modeling early embryogenic patterning with human pluripotent stem cells.

blue CRY2/CRY2 hESCs human IPSCs Signaling cascade control Control of cytoskeleton / cell motility / cell shape Cell differentiation
bioRxiv, 10 Jun 2019 DOI: 10.1101/665695 Link to full text
Abstract: The processes of cell proliferation, differentiation, migration, and self-organization during early embryonic development are governed by dynamic, spatially and temporally varying morphogen signals. Analogous tissue patterns emerge spontaneously in embryonic stem cell (ESC) models for gastrulation, but mechanistic insight into this self-organization is limited by a lack of molecular methods to precisely control morphogen signal dynamics. Here we combine optogenetic stimulation and single-cell imaging approaches to study self-organization of human pluripotent stem cells. Precise control of morphogen signal dynamics, achieved through activation of canonical Wnt/β-catenin signaling over a broad high dynamic range (>500-fold) using an optoWnt optogenetic system, drove broad transcriptional changes and mesendoderm differentiation of human ESCs at high efficiency (>95% cells). Furthermore, activating Wnt signaling in subpopulations of ESCs in 2D and 3D cultures induced cell self-organization and morphogenesis reminiscent of human gastrulation, including changes in cell migration and epithelial to mesenchymal transition. Our findings thus reveal an instructive role for Wnt in directing cell patterning in this ESC model for gastrulation.
12.

Reversible Optogenetic Control of Growth Factor Signaling During Cell Differentiation and Vertebrate Embryonic Development.

blue CRY2/CIB1 VfAU1-LOV PC-12 Xenopus oocytes Signaling cascade control Cell differentiation Developmental processes
OSA Technical Digest, 15 Apr 2019 DOI: 10.1364/oma.2019.aw1e.1 Link to full text
Abstract: To decipher the kinetic regulation of growth factor signaling outcomes, I will introduce our recently developed non-neuronal optogenetic strategies that enable reversible control of growth factor signaling during cell differentiation and embryonic development.
13.

Membrane-Associated, Not Cytoplasmic or Nuclear, FGFR1 Induces Neuronal Differentiation.

blue VfAU1-LOV HEK293 PC-12 U-251 Signaling cascade control Cell differentiation
Cells, 14 Mar 2019 DOI: 10.3390/cells8030243 Link to full text
Abstract: The intracellular transport of receptor tyrosine kinases results in the differential activation of various signaling pathways. In this study, optogenetic stimulation of fibroblast growth factor receptor type 1 (FGFR1) was performed to study the effects of subcellular targeting of receptor kinases on signaling and neurite outgrowth. The catalytic domain of FGFR1 fused to the algal light-oxygen-voltage-sensing (LOV) domain was directed to different cellular compartments (plasma membrane, cytoplasm and nucleus) in human embryonic kidney (HEK293) and pheochromocytoma (PC12) cells. Blue light stimulation elevated the pERK and pPLCγ1 levels in membrane-opto-FGFR1-transfected cells similarly to ligand-induced receptor activation; however, no changes in pAKT levels were observed. PC12 cells transfected with membrane-opto-FGFR1 exhibited significantly longer neurites after light stimulation than after growth factor treatment, and significantly more neurites extended from their cell bodies. The activation of cytoplasmic FGFR1 kinase enhanced ERK signaling in HEK293 cells but not in PC12 cells and did not induce neuronal differentiation. The stimulation of FGFR1 kinase in the nucleus also did not result in signaling changes or neurite outgrowth. We conclude that FGFR1 kinase needs to be associated with membranes to induce the differentiation of PC12 cells mainly via ERK activation.
14.

Optogenetic Delineation of Receptor Tyrosine Kinase Subcircuits in PC12 Cell Differentiation.

blue VfAU1-LOV PC-12 Signaling cascade control Cell differentiation
Cell Chem Biol, 27 Dec 2018 DOI: 10.1016/j.chembiol.2018.11.004 Link to full text
Abstract: Nerve growth factor elicits signaling outcomes by interacting with both its high-affinity receptor, TrkA, and its low-affinity receptor, p75NTR. Although these two receptors can regulate distinct cellular outcomes, they both activate the extracellular-signal-regulated kinase pathway upon nerve growth factor stimulation. To delineate TrkA subcircuits in PC12 cell differentiation, we developed an optogenetic system whereby light was used to specifically activate TrkA signaling in the absence of nerve growth factor. By using tyrosine mutants of the optogenetic TrkA in combination with pathway-specific pharmacological inhibition, we find that Y490 and Y785 each contributes to PC12 cell differentiation through the extracellular-signal-regulated kinase pathway in an additive manner. Optogenetic activation of TrkA eliminates the confounding effect of p75NTR and other potential off-target effects of the ligand. This approach can be generalized for the mechanistic study of other receptor-mediated signaling pathways.
15.

Optogenetic manipulation of intracellular calcium by BACCS promotes differentiation of MC3T3-E1 cells.

blue AsLOV2 MC3T3-E1 Cell differentiation Immediate control of second messengers
Biochem Biophys Res Commun, 27 Oct 2018 DOI: 10.1016/j.bbrc.2018.10.107 Link to full text
Abstract: Bone remodeling is maintained through the balance between bone formation by osteoblasts and bone resorption by osteoclasts. Previous studies suggested that intracellular Ca2+ signaling plays an important role in the differentiation of osteoblasts; however, the molecular mechanism of Ca2+ signaling in the differentiation of osteoblasts remains unclear. To elucidate the effect of Ca2+ signaling in osteoblasts, we employed an optogenetic tool, blue light-activated Ca2+ channel switch (BACCS). BACCS was used to spatiotemporally control intracellular Ca2+ with blue light stimulation. MC3T3-E1 cells, which have been used as a model of differentiation from preosteoblast to osteoblast, were promoted to differentiate by BACCS expression and rhythmical blue light stimulation. The results indicated that intracellular Ca2+ change from the outside of the cells can regulate signaling for differentiation of MC3T3-E1 cells. Our findings provide evidence that Ca2+ could cause osteoblast differentiation.
16.

Cyclic Stiffness Modulation of Cell‐Laden Protein–Polymer Hydrogels in Response to User‐Specified Stimuli Including Light.

blue AsLOV2 in vitro Cell differentiation Control of cell-cell / cell-material interactions
Adv Biosyst, 12 Oct 2018 DOI: 10.1002/adbi.201800240 Link to full text
Abstract: Although mechanical signals presented by the extracellular matrix are known to regulate many essential cell functions, the specific effects of these interactions, particularly in response to dynamic and heterogeneous cues, remain largely unknown. Here, a modular semisynthetic approach is introduced to create protein–polymer hydrogel biomaterials that undergo reversible stiffening in response to user‐specified inputs. Employing a novel dual‐chemoenzymatic modification strategy, fusion protein‐based gel crosslinkers are created that exhibit stimuli‐dependent intramolecular association. Linkers based on calmodulin yield calcium‐sensitive materials, while those containing the photosensitive light, oxygen, and voltage sensing domain 2 (LOV2) protein give phototunable constructs whose moduli can be cycled on demand with spatiotemporal control about living cells. These unique materials are exploited to demonstrate the significant role that cyclic mechanical loading plays on fibroblast‐to‐myofibroblast transdifferentiation in 3D space. The moduli‐switchable materials should prove useful for studies in mechanobiology, providing new avenues to probe and direct matrix‐driven changes in 4D cell physiology.
17.

Optogenetic control of epithelial-mesenchymal transition in cancer cells.

blue CRY2/CIB1 A549 HeLa Signaling cascade control Control of cytoskeleton / cell motility / cell shape Cell differentiation
Sci Rep, 20 Sep 2018 DOI: 10.1038/s41598-018-32539-3 Link to full text
Abstract: Epithelial-mesenchymal transition (EMT) is one of the most important mechanisms in the initiation and promotion of cancer cell metastasis. The phosphoinositide 3-kinase (PI3K) signaling pathway has been demonstrated to be involved in TGF-β induced EMT, but the complicated TGF-β signaling network makes it challenging to dissect the important role of PI3K on regulation of EMT process. Here, we applied optogenetic controlled PI3K module (named 'Opto-PI3K'), which based on CRY2 and the N-terminal of CIB1 (CIBN), to rapidly and reversibly control the endogenous PI3K activity in cancer cells with light. By precisely modulating the kinetics of PI3K activation, we found that E-cadherin is an important downstream target of PI3K signaling. Compared with TGF-β treatment, Opto-PI3K had more potent effect in down-regulation of E-cadherin expression, which was demonstrated to be regulated in a light dose-dependent manner. Surprisingly, sustained PI3K activation induced partial EMT state in A549 cells that is highly reversible. Furthermore, we demonstrated that Opto-PI3K only partially mimicked TGF-β effects on promotion of cell migration in vitro. These results reveal the importance of PI3K signaling in TGF-β induced EMT, suggesting other TGF-β regulated signaling pathways are necessary for the full and irreversible promotion of EMT in cancer cells. In addition, our study implicates the great promise of optogenetics in cancer research for mapping input-output relationships in oncogenic pathways.
18.

Optical activation of TrkA signaling.

blue CRY2/CIB1 CRY2/CRY2 NIH/3T3 PC-12 Signaling cascade control Cell differentiation
ACS Synth Biol, 5 Jul 2018 DOI: 10.1021/acssynbio.8b00126 Link to full text
Abstract: Nerve growth factor/tropomyosin receptor kinase A (NGF/TrkA) signaling plays a key role in neuronal development, function, survival, and growth. The pathway is implicated in neurodegenerative disorders including Alzheimer's disease, chronic pain, inflammation, and cancer. NGF binds the extracellular domain of TrkA, leading to the activation of the receptor's intracellular kinase domain. TrkA signaling is highly dynamic, thus mechanistic studies would benefit from a tool with high spatial and temporal resolution. Here we present the design and evaluation of four strategies for light-inducible activation of TrkA in the absence of NGF. Our strategies involve the light-sensitive protein Arabidopsis cryptochrome 2 (CRY2) and its binding partner CIB1. We demonstrate successful recapitulation of native NGF/TrkA functions by optical induction of plasma membrane recruitment and homo-interaction of the intracellular domain of TrkA. This approach activates PI3K/AKT and Raf/ERK signaling pathways, promotes neurite growth in PC12 cells, and supports the survival of dorsal root ganglion neurons in the absence of NGF. This ability to activate TrkA using light bestows high spatial and temporal resolution for investigating NGF/TrkA signaling.
19.

Synthetic far-red light-mediated CRISPR-dCas9 device for inducing functional neuronal differentiation.

blue red BphS CRY2/CIB1 HEK293 mouse in vivo Cell differentiation Endogenous gene expression Immediate control of second messengers
Proc Natl Acad Sci USA, 2 Jul 2018 DOI: 10.1073/pnas.1802448115 Link to full text
Abstract: The ability to control the activity of CRISPR-dCas9 with precise spatiotemporal resolution will enable tight genome regulation of user-defined endogenous genes for studying the dynamics of transcriptional regulation. Optogenetic devices with minimal phototoxicity and the capacity for deep tissue penetration are extremely useful for precise spatiotemporal control of cellular behavior and for future clinic translational research. Therefore, capitalizing on synthetic biology and optogenetic design principles, we engineered a far-red light (FRL)-activated CRISPR-dCas9 effector (FACE) device that induces transcription of exogenous or endogenous genes in the presence of FRL stimulation. This versatile system provides a robust and convenient method for precise spatiotemporal control of endogenous gene expression and also has been demonstrated to mediate targeted epigenetic modulation, which can be utilized to efficiently promote differentiation of induced pluripotent stem cells into functional neurons by up-regulating a single neural transcription factor, NEUROG2 This FACE system might facilitate genetic/epigenetic reprogramming in basic biological research and regenerative medicine for future biomedical applications.
20.

CRISPR-Cas9-based photoactivatable transcription systems to induce neuronal differentiation.

blue CRY2/CIB1 Magnets HEK293T HeLa human fetal fibroblasts human IPSCs Cell differentiation Endogenous gene expression
Nat Methods, 11 Sep 2017 DOI: 10.1038/nmeth.4430 Link to full text
Abstract: Our improved CRISPR-Cas9-based photoactivatable transcription systems, CPTS2.0 and Split-CPTS2.0, enable high blue-light-inducible activation of endogenous target genes in various human cell lines. We achieved reversible activation of target genes with CPTS2.0 and induced neuronal differentiation in induced pluripotent stem cells (iPSCs) by upregulating NEUROD1 with Split-CPTS2.0.
21.

An Engineered Optogenetic Switch for Spatiotemporal Control of Gene Expression, Cell Differentiation, and Tissue Morphogenesis.

blue CRY2/CIB1 C3H/10T1/2 HEK293T mouse in vivo Transgene expression Cell differentiation Developmental processes Nucleic acid editing
ACS Synth Biol, 9 Aug 2017 DOI: 10.1021/acssynbio.7b00147 Link to full text
Abstract: The precise spatial and temporal control of gene expression, cell differentiation, and tissue morphogenesis has widespread application in regenerative medicine and the study of tissue development. In this work, we applied optogenetics to control cell differentiation and new tissue formation. Specifically, we engineered an optogenetic "on" switch that provides permanent transgene expression following a transient dose of blue light illumination. To demonstrate its utility in controlling cell differentiation and reprogramming, we incorporated an engineered form of the master myogenic factor MyoD into this system in multipotent cells. Illumination of cells with blue light activated myogenic differentiation, including upregulation of myogenic markers and fusion into multinucleated myotubes. Cell differentiation was spatially patterned by illumination of cell cultures through a photomask. To demonstrate the application of the system to controlling in vivo tissue development, the light inducible switch was used to control the expression of VEGF and angiopoietin-1, which induced angiogenic sprouting in a mouse dorsal window chamber model. Live intravital microscopy showed illumination-dependent increases in blood-perfused microvasculature. This optogenetic switch is broadly useful for applications in which sustained and patterned gene expression is desired following transient induction, including tissue engineering, gene therapy, synthetic biology, and fundamental studies of morphogenesis.
22.

Optogenetic clustering of CNK1 reveals mechanistic insights in RAF and AKT signalling controlling cell fate decisions.

blue CRY2/CRY2 C2C12 HEK293T HeLa MCF7 Signaling cascade control Cell cycle control Cell differentiation
Sci Rep, 30 Nov 2016 DOI: 10.1038/srep38155 Link to full text
Abstract: Scaffold proteins such as the multidomain protein CNK1 orchestrate the signalling network by integrating and controlling the underlying pathways. Using an optogenetic approach to stimulate CNK1 uncoupled from upstream effectors, we identified selective clusters of CNK1 that either stimulate RAF-MEK-ERK or AKT signalling depending on the light intensity applied. OptoCNK1 implemented in MCF7 cells induces differentiation at low light intensity stimulating ERK activity whereas stimulation of AKT signalling by higher light intensity promotes cell proliferation. CNK1 clustering in response to increasing EGF concentrations revealed that CNK1 binds to RAF correlating with ERK activation at low EGF dose. At higher EGF dose active AKT binds to CNK1 and phosphorylates and inhibits RAF. Knockdown of CNK1 protects CNK1 from this AKT/RAF crosstalk. In C2 skeletal muscle cells CNK1 expression is induced with the onset of differentiation. Hence, AKT-bound CNK1 counteracts ERK stimulation in differentiated but not in proliferating cells. Ectopically expressed CNK1 facilitates C2 cell differentiation and knockdown of CNK1 impaired the transcriptional network underlying C2 cell differentiation. Thus, CNK1 expression, CNK1 clustering and the thereto related differential signalling processes decide on proliferation and differentiation in a cell type- and cell stage-dependent manner by orchestrating AKT and RAF signalling.
23.

Reversible optogenetic control of kinase activity during differentiation and embryonic development.

blue CRY2/CIB1 BHK-21 PC-12 Xenopus in vivo Signaling cascade control Cell differentiation Developmental processes
Development, 3 Oct 2016 DOI: 10.1242/dev.140889 Link to full text
Abstract: A limited number of signaling pathways are repeatedly used to regulate a wide variety of processes during development and differentiation. The lack of tools to manipulate signaling pathways dynamically in space and time has been a major technical challenge for biologists. Optogenetic techniques, which utilize light to control protein functions in a reversible fashion, hold promise for modulating intracellular signaling networks with high spatial and temporal resolution. Applications of optogenetics in multicellular organisms, however, have not been widely reported. Here, we create an optimized bicistronic optogenetic system using Arabidopsis thaliana cryptochrome 2 (CRY2) protein and the N-terminal domain of cryptochrome-interacting basic-helix-loop-helix (CIBN). In a proof-of-principle study, we develop an optogenetic Raf kinase that allows reversible light-controlled activation of the Raf/MEK/ERK signaling cascade. In PC12 cells, this system significantly improves light-induced cell differentiation compared with co-transfection. When applied to Xenopus embryos, this system enables blue light-dependent reversible Raf activation at any desired developmental stage in specific cell lineages. Our system offers a powerful optogenetic tool suitable for manipulation of signaling pathways with high spatial and temporal resolution in a wide range of experimental settings.
24.

Light-induced Notch activity controls neurogenic and gliogenic potential of neural progenitors.

blue VVD mouse neural progenitor cells P19 primary mouse cortical neurons Transgene expression Cell differentiation
Biochem Biophys Res Commun, 25 Sep 2016 DOI: 10.1016/j.bbrc.2016.09.124 Link to full text
Abstract: Oscillations in Notch signaling are essential for reserving neural progenitors for cellular diversity in developing brains. Thus, steady and prolonged overactivation of Notch signaling is not suitable for generating neurons. To acquire greater temporal control of Notch activity and mimic endogenous oscillating signals, here we adopted a light-inducible transgene system to induce active form of Notch NICD in neural progenitors. Alternating Notch activity saved more progenitors that are prone to produce neurons creating larger number of mixed clones with neurons and progenitors in vitro, compared to groups with no light or continuous light stimulus. Furthermore, more upper layer neurons and astrocytes arose upon intermittent Notch activity, indicating that dynamic Notch activity maintains neural progeny and fine-tune neuron-glia diversity.
25.

Regulation of neural gene transcription by optogenetic inhibition of the RE1-silencing transcription factor.

blue AsLOV2 HeLa Neuro-2a primary mouse cortical neurons Cell differentiation Endogenous gene expression Neuronal activity control
Proc Natl Acad Sci USA, 23 Dec 2015 DOI: 10.1073/pnas.1507355112 Link to full text
Abstract: Optogenetics provides new ways to activate gene transcription; however, no attempts have been made as yet to modulate mammalian transcription factors. We report the light-mediated regulation of the repressor element 1 (RE1)-silencing transcription factor (REST), a master regulator of neural genes. To tune REST activity, we selected two protein domains that impair REST-DNA binding or recruitment of the cofactor mSin3a. Computational modeling guided the fusion of the inhibitory domains to the light-sensitive Avena sativa light-oxygen-voltage-sensing (LOV) 2-phototrophin 1 (AsLOV2). By expressing AsLOV2 chimeras in Neuro2a cells, we achieved light-dependent modulation of REST target genes that was associated with an improved neural differentiation. In primary neurons, light-mediated REST inhibition increased Na(+)-channel 1.2 and brain-derived neurotrophic factor transcription and boosted Na(+) currents and neuronal firing. This optogenetic approach allows the coordinated expression of a cluster of genes impinging on neuronal activity, providing a tool for studying neuronal physiology and correcting gene expression changes taking place in brain diseases.
Submit a new publication to our database