Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 25 of 43 results
1.

Luminescence-activated nucleotide cyclase regulates spatial and temporal cAMP synthesis.

blue bPAC (BlaC) HC-1 HEK293 PCCL3 Cell cycle control Immediate control of second messengers
J Biol Chem, 17 Dec 2018 DOI: 10.1074/jbc.ac118.004905 Link to full text
Abstract: cAMP is a ubiquitous second messenger that regulates cellular proliferation, differentiation, attachment, migration, and several other processes. It has become increasingly evident that tight regulation of cAMP accumulation and localization confers divergent yet specific signaling to downstream pathways. Currently, few tools are available that have sufficient spatial and temporal resolution to study location-biased cAMP signaling. Here, we introduce a new fusion protein consisting of a light-activated adenylyl cyclase (bPAC) and luciferase (nLuc). This construct allows dual activation of cAMP production through temporally precise photostimulation or chronic chemical stimulation that can be fined-tuned to mimic physiological levels and duration of cAMP synthesis to trigger downstream events. By targeting this construct to different compartments, we show that cAMP produced in the cytosol and nucleus stimulates proliferation in thyroid cells. The bPAC-nLuc fusion construct adds a new reagent to the available toolkit to study cAMP-regulated processes in living cells.
2.

Engineering a light-responsive, quorum quenching biofilm to mitigate biofouling on water purification membranes.

blue red BphS EB1 E. coli Control of cell-cell / cell-material interactions Immediate control of second messengers Multichromatic
Sci Adv, 7 Dec 2018 DOI: 10.1126/sciadv.aau1459 Link to full text
Abstract: Quorum quenching (QQ) has been reported to be a promising approach for membrane biofouling control. Entrapment of QQ bacteria in porous matrices is required to retain them in continuously operated membrane processes and to prevent uncontrollable biofilm formation by the QQ bacteria on membrane surfaces. It would be more desirable if the formation and dispersal of biofilms by QQ bacteria could be controlled so that the QQ bacterial cells are self-immobilized, but the QQ biofilm itself still does not compromise membrane performance. In this study, we engineered a QQ bacterial biofilm whose growth and dispersal can be modulated by light through a dichromatic, optogenetic c-di-GMP gene circuit in which the bacterial cells sense near-infrared (NIR) light and blue light to adjust its biofilm formation by regulating the c-di-GMP level. We also demonstrated the potential application of the engineered light-responsive QQ biofilm in mitigating biofouling of water purification forward osmosis membranes. The c-di-GMP-targeted optogenetic approach for controllable biofilm development we have demonstrated here should prove widely applicable for designing other controllable biofilm-enabled applications such as biofilm-based biocatalysis.
3.

Potassium channel-based optogenetic silencing.

blue bPAC (BlaC) HEK293 mouse hippocampal slices mouse in vivo ND7/23 primary mouse hippocampal neurons rabbit cardiomyocytes zebrafish in vivo Immediate control of second messengers Neuronal activity control
Nat Commun, 5 Nov 2018 DOI: 10.1038/s41467-018-07038-8 Link to full text
Abstract: Optogenetics enables manipulation of biological processes with light at high spatio-temporal resolution to control the behavior of cells, networks, or even whole animals. In contrast to the performance of excitatory rhodopsins, the effectiveness of inhibitory optogenetic tools is still insufficient. Here we report a two-component optical silencer system comprising photoactivated adenylyl cyclases (PACs) and the small cyclic nucleotide-gated potassium channel SthK. Activation of this 'PAC-K' silencer by brief pulses of low-intensity blue light causes robust and reversible silencing of cardiomyocyte excitation and neuronal firing. In vivo expression of PAC-K in mouse and zebrafish neurons is well tolerated, where blue light inhibits neuronal activity and blocks motor responses. In combination with red-light absorbing channelrhodopsins, the distinct action spectra of PACs allow independent bimodal control of neuronal activity. PAC-K represents a reliable optogenetic silencer with intrinsic amplification for sustained potassium-mediated hyperpolarization, conferring high operational light sensitivity to the cells of interest.
4.

Synthetic Light-Activated Ion Channels for Optogenetic Activation and Inhibition.

blue green BeCyclOp (BeGC1) bPAC (BlaC) D. melanogaster in vivo rat hippocampal neurons Xenopus oocytes Immediate control of second messengers Neuronal activity control
Front Neurosci, 2 Oct 2018 DOI: 10.3389/fnins.2018.00643 Link to full text
Abstract: Optogenetic manipulation of cells or living organisms became widely used in neuroscience following the introduction of the light-gated ion channel channelrhodopsin-2 (ChR2). ChR2 is a non-selective cation channel, ideally suited to depolarize and evoke action potentials in neurons. However, its calcium (Ca2+) permeability and single channel conductance are low and for some applications longer-lasting increases in intracellular Ca2+ might be desirable. Moreover, there is need for an efficient light-gated potassium (K+) channel that can rapidly inhibit spiking in targeted neurons. Considering the importance of Ca2+ and K+ in cell physiology, light-activated Ca2+-permeant and K+-specific channels would be welcome additions to the optogenetic toolbox. Here we describe the engineering of novel light-gated Ca2+-permeant and K+-specific channels by fusing a bacterial photoactivated adenylyl cyclase to cyclic nucleotide-gated channels with high permeability for Ca2+ or for K+, respectively. Optimized fusion constructs showed strong light-gated conductance in Xenopus laevis oocytes and in rat hippocampal neurons. These constructs could also be used to control the motility of Drosophila melanogaster larvae, when expressed in motoneurons. Illumination led to body contraction when motoneurons expressed the light-sensitive Ca2+-permeant channel, and to body extension when expressing the light-sensitive K+ channel, both effectively and reversibly paralyzing the larvae. Further optimization of these constructs will be required for application in adult flies since both constructs led to eclosion failure when expressed in motoneurons.
5.

Optogenetic control shows that kinetic proofreading regulates the activity of the T cell receptor.

red PhyB/PIF6 Jurkat Signaling cascade control Immediate control of second messengers
bioRxiv, 1 Oct 2018 DOI: 10.1101/432740 Link to full text
Abstract: The pivotal task of the immune system is to distinguish between self and foreign antigens. The kinetic proofreading model (KPR) proposes that T cells discriminate self from foreign ligands by the different ligand binding half-lives to the T cell receptor (TCR). It is challenging to test KPR as the available experimental systems fall short of only altering the binding half-lives and keeping other parameters of the ligand-TCR interaction unchanged. We engineered an optogenetic system using the plant photoreceptor phytochrome B to selectively control the dynamics of ligand binding to the TCR by light. Combining experiments with mathematical modeling we find that the ligand-TCR interaction half-life is the decisive factor for activating downstream TCR signaling, substantiating the KPR hypothesis.
6.

Synthetic far-red light-mediated CRISPR-dCas9 device for inducing functional neuronal differentiation.

blue red BphS CRY2/CIB1 HEK293 mouse in vivo Cell differentiation Endogenous gene expression Immediate control of second messengers
Proc Natl Acad Sci USA, 2 Jul 2018 DOI: 10.1073/pnas.1802448115 Link to full text
Abstract: The ability to control the activity of CRISPR-dCas9 with precise spatiotemporal resolution will enable tight genome regulation of user-defined endogenous genes for studying the dynamics of transcriptional regulation. Optogenetic devices with minimal phototoxicity and the capacity for deep tissue penetration are extremely useful for precise spatiotemporal control of cellular behavior and for future clinic translational research. Therefore, capitalizing on synthetic biology and optogenetic design principles, we engineered a far-red light (FRL)-activated CRISPR-dCas9 effector (FACE) device that induces transcription of exogenous or endogenous genes in the presence of FRL stimulation. This versatile system provides a robust and convenient method for precise spatiotemporal control of endogenous gene expression and also has been demonstrated to mediate targeted epigenetic modulation, which can be utilized to efficiently promote differentiation of induced pluripotent stem cells into functional neurons by up-regulating a single neural transcription factor, NEUROG2 This FACE system might facilitate genetic/epigenetic reprogramming in basic biological research and regenerative medicine for future biomedical applications.
7.

Optogenetic inhibition of Gαq protein signaling reduces calcium oscillation stochasticity.

blue CRY2/CIB1 HEK293T Signaling cascade control Immediate control of second messengers
ACS Synth Biol, 24 May 2018 DOI: 10.1021/acssynbio.8b00065 Link to full text
Abstract: As fast terminators of G-protein coupled receptor (GPCR) signaling, regulators of G-protein signaling (RGS) serve critical roles in fine-tuning second messenger levels and, consequently, cellular responses to external stimuli. Here, we report the creation of an optogenetic RGS2 (opto-RGS2) that suppresses agonist-evoked calcium oscillations by the inactivation of Gαq protein. In this system, cryptochrome-mediated hetero-dimerization of the catalytic RGS2-box with its N-terminal amphipathic helix reconstitutes a functional membrane-localized complex that can dynamically suppress store-operated release of calcium. Engineered opto-RGS2 cell lines were used to establish the role of RGS2 as a key inhibitory feedback regulator of the stochasticity of the Gαq-mediated calcium spike timing. RGS2 reduced the stochasticity of carbachol-stimulated calcium oscillations, and the feedback inhibition was coupled to the global calcium elevation by calmodulin/RGS2 interactions. The identification of a critical negative feedback circuit exemplifies the utility of optogenetic approaches for interrogating RGS/GPCR biology and calcium encoding principles through temporally precise molecular gain-of-function.
8.

Bioprinting Living Biofilms through Optogenetic Manipulation.

blue red BlrP1 BphS P. aeruginosa Control of cell-cell / cell-material interactions Immediate control of second messengers Multichromatic
ACS Synth Biol, 18 Apr 2018 DOI: 10.1021/acssynbio.8b00003 Link to full text
Abstract: In this paper, we present a new strategy for microprinting dense bacterial communities with a prescribed organization on a substrate. Unlike conventional bioprinting techniques that require bioinks, through optogenetic manipulation, we directly manipulated the behaviors of Pseudomonas aeruginosa to allow these living bacteria to autonomically form patterned biofilms following prescribed illumination. The results showed that through optogenetic manipulation, patterned bacterial communities with high spatial resolution (approximately 10 μm) could be constructed in 6 h. Thus, optogenetic manipulation greatly increases the range of available bioprinting techniques.
9.

Cyanobacteriochrome-based photoswitchable adenylyl cyclases (cPACs) for broad spectrum light regulation of cAMP levels in cells.

violet cPAC E. coli in vitro Immediate control of second messengers
J Biol Chem, 9 Apr 2018 DOI: 10.1074/jbc.ra118.002258 Link to full text
Abstract: Class III adenylyl cyclases generate the ubiquitous second messenger cAMP from ATP often in response to environmental or cellular cues. During evolution, soluble adenylyl-cyclase catalytic domains have been repeatedly juxtaposed with signal-input domains to place cAMP synthesis under the control of a wide variety of these environmental and endogenous signals. Adenylyl cyclases with light-sensing domains have proliferated in photosynthetic species depending on light as an energy source, yet are also widespread in non-photosynthetic species. Among such naturally occurring light sensors, several flavin-based photoactivated adenylyl cyclases (PACs) have been adopted as optogenetic tools to manipulate cellular processes with blue light. In this report, we report the discovery of a cyanobacteriochrome-based photoswitchable adenylyl cyclase (cPAC) from the cyanobacterium Microcoleussp. PCC 7113. Unlike flavin-dependent PACs, which must thermally decay to be deactivated, cPAC exhibited a bistable photocycle whose adenylyl cyclase could be reversibly activated and inactivated by blue and green light, respectively. Through domain exchange experiments, we also document the ability to extend the wavelength-sensing specificity of cPAC into the near IR. In summary, our work has uncovered a cyanobacteriochrome-based adenylyl cyclase that holds great potential for design of bistable photoswitchable adenylyl cyclases to fine-tune cAMP-regulated processes in cells. tissues, and whole organisms with light across the visible spectrum and into near IR.
10.

Rewiring Calcium Signaling for Precise Transcriptional Reprogramming.

blue AsLOV2 LOVTRAP HEK293T HeLa Endogenous gene expression Immediate control of second messengers
ACS Synth Biol, 6 Mar 2018 DOI: 10.1021/acssynbio.7b00467 Link to full text
Abstract: Tools capable of modulating gene expression in living organisms are very useful for interrogating the gene regulatory network and controlling biological processes. The catalytically inactive CRISPR/Cas9 (dCas9), when fused with repressive or activating effectors, functions as a versatile platform to reprogram gene transcription at targeted genomic loci. However, without temporal control, the application of these reprogramming tools will likely cause off-target effects and lack strict reversibility. To overcome this limitation, we report herein the development of a chemical or light-inducible transcriptional reprogramming device that combines photoswitchable genetically encoded calcium actuators with dCas9 to control gene expression. By fusing an engineered Ca2+-responsive NFAT fragment with dCas9 and transcriptional coactivators, we harness the power of light to achieve photoinducible transcriptional reprogramming in mammalian cells. This synthetic system (designated CaRROT) can also be used to document calcium-dependent activity in mammals after exposure to ligands or chemicals that would elicit calcium response inside cells.
11.

Optogenetics reprogramming of planktonic cells for biofilm formation.

red BphS P. aeruginosa Control of cytoskeleton / cell motility / cell shape Control of cell-cell / cell-material interactions Immediate control of second messengers
bioRxiv, 4 Dec 2017 DOI: 10.1101/229229 Link to full text
Abstract: Single-cell behaviors play essential roles during early-stage biofilms formation. In this study, we evaluated whether biofilm formation could be guided by precisely manipulating single cells behaviors. Thus, we established an illumination method to precisely manipulate the type IV pili (TFP) mediated motility and microcolony formation of Pseudomonas aeruginosa by using a combination of a high-throughput bacterial tracking algorithm, optogenetic manipulation and adaptive microscopy. We termed this method as Adaptive Tracking Illumination (ATI). We reported that ATI enables the precise manipulation of TFP mediated motility and microcolony formation during biofilm formation by manipulating bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) levels in single cells. Moreover, we showed that the spatial organization of single cells in mature biofilms can be controlled using ATI. Thus, the established method (i.e., ATI) can markedly promote ongoing studies of biofilms.
12.

Modulation of cyclic nucleotide-mediated cellular signaling and gene expression using photoactivated adenylyl cyclase as an optogenetic tool.

blue bPAC (BlaC) NgPAC D. discoideum HEK293T Endogenous gene expression Developmental processes Immediate control of second messengers
Sci Rep, 21 Sep 2017 DOI: 10.1038/s41598-017-12162-4 Link to full text
Abstract: Cyclic nucleotide signaling pathway plays a significant role in various biological processes such as cell growth, transcription, inflammation, in microbial pathogenesis, etc. Modulation of cyclic nucleotide levels by optogenetic tools has overcome certain limitations of studying transduction cascade by pharmacological agents and has allowed several ways to modulate biological processes in a spatiotemporal manner. Here, we have shown the optogenetic modulation of the cyclooxygenase 2 (Cox-2) gene expression and their downstream effector molecule (PGE2) in HEK-293T cells and the development process of Dictyostelium discoideum via modulating the cyclic nucleotide (cAMP) signaling pathway utilizing photoactivated adenylyl cyclases (PACs) as an optogenetic tool. Light-induced activation of PACs in HEK-293T cells increases the cAMP level that leads to activation of cAMP response element-binding protein (CREB) transcription factor and further upregulates downstream Cox-2 gene expression and their downstream effector molecule prostaglandin E2. In D. discoideum, the light-regulated increase in cAMP level affects the starvation-induced developmental process. These PACs could modulate the cAMP levels in a light-dependent manner and have a potential to control gene expression and their downstream effector molecules with varying magnitude. It would enable one to utilize PAC as a tool to decipher cyclic nucleotide mediated signaling pathway regulations and their mechanism.
13.

Optogenetic regulation of insulin secretion in pancreatic β-cells.

blue bPAC (BlaC) Beta-TC MIN6 murine pancreatic islet cells Control of vesicular transport Immediate control of second messengers
Sci Rep, 24 Aug 2017 DOI: 10.1038/s41598-017-09937-0 Link to full text
Abstract: Pancreatic β-cell insulin production is orchestrated by a complex circuitry involving intracellular elements including cyclic AMP (cAMP). Tackling aberrations in glucose-stimulated insulin release such as in diabetes with pharmacological agents, which boost the secretory capacity of β-cells, is linked to adverse side effects. We hypothesized that a photoactivatable adenylyl cyclase (PAC) can be employed to modulate cAMP in β-cells with light thereby enhancing insulin secretion. To that end, the PAC gene from Beggiatoa (bPAC) was delivered to β-cells. A cAMP increase was noted within 5 minutes of photostimulation and a significant drop at 12 minutes post-illumination. The concomitant augmented insulin secretion was comparable to that from β-cells treated with secretagogues. Greater insulin release was also observed over repeated cycles of photoinduction without adverse effects on viability and proliferation. Furthermore, the expression and activation of bPAC increased cAMP and insulin secretion in murine islets and in β-cell pseudoislets, which displayed a more pronounced light-triggered hormone secretion compared to that of β-cell monolayers. Calcium channel blocking curtailed the enhanced insulin response due to bPAC activity. This optogenetic system with modulation of cAMP and insulin release can be employed for the study of β-cell function and for enabling new therapeutic modalities for diabetes.
14.

Red fluorescent protein-based cAMP indicator applicable to optogenetics and in vivo imaging.

blue bPAC (BlaC) HeLa Immediate control of second messengers
Sci Rep, 4 Aug 2017 DOI: 10.1038/s41598-017-07820-6 Link to full text
Abstract: cAMP is a common second messenger that is involved in various physiological processes. To expand the colour palette of available cAMP indicators, we developed a red cAMP indicator named "Pink Flamindo" (Pink Fluorescent cAMP indicator). The fluorescence intensity of Pink Flamindo increases 4.2-fold in the presence of a saturating dose of cAMP, with excitation and emission peaks at 567 nm and 590 nm, respectively. Live-cell imaging revealed that Pink Flamindo is effective for monitoring the spatio-temporal dynamics of intracellular cAMP generated by photoactivated adenylyl cyclase in response to blue light, and in dual-colour imaging studies using a green Ca2+ indicator (G-GECO). Furthermore, we successfully monitored the elevation of cAMP levels in vivo in cerebral cortical astrocytes by two-photon imaging. We propose that Pink Flamindo will facilitate future in vivo, optogenetic studies of cell signalling and cAMP dynamics.
15.

Optogenetic protein clustering through fluorescent protein tagging and extension of CRY2.

blue CRY2/CRY2 CRY2clust CRY2olig HeLa Signaling cascade control Immediate control of second messengers
Nat Commun, 23 Jun 2017 DOI: 10.1038/s41467-017-00060-2 Link to full text
Abstract: Protein homo-oligomerization is an important molecular mechanism in many biological processes. Therefore, the ability to control protein homo-oligomerization allows the manipulation and interrogation of numerous cellular events. To achieve this, cryptochrome 2 (CRY2) from Arabidopsis thaliana has been recently utilized for blue light-dependent spatiotemporal control of protein homo-oligomerization. However, limited knowledge on molecular characteristics of CRY2 obscures its widespread applications. Here, we identify important determinants for efficient cryptochrome 2 clustering and introduce a new CRY2 module, named ''CRY2clust'', to induce rapid and efficient homo-oligomerization of target proteins by employing diverse fluorescent proteins and an extremely short peptide. Furthermore, we demonstrate advancement and versatility of CRY2clust by comparing against previously reported optogenetic tools. Our work not only expands the optogenetic clustering toolbox but also provides a guideline for designing CRY2-based new optogenetic modules.Cryptochrome 2 (CRY2) from A. thaliana can be used to control light-dependent protein homo-oligomerization, but the molecular mechanism of CRY2 clustering is not known, limiting its application. Here the authors identify determinants of CRY2 clustering and engineer fusion partners to modulate clustering efficiency.
16.

Smartphone-controlled optogenetically engineered cells enable semiautomatic glucose homeostasis in diabetic mice.

red BphS Hana3A HEK293A HeLa hMSCs mouse in vivo Neuro-2a Transgene expression Immediate control of second messengers
Sci Transl Med, 26 Apr 2017 DOI: 10.1126/scitranslmed.aal2298 Link to full text
Abstract: With the increasingly dominant role of smartphones in our lives, mobile health care systems integrating advanced point-of-care technologies to manage chronic diseases are gaining attention. Using a multidisciplinary design principle coupling electrical engineering, software development, and synthetic biology, we have engineered a technological infrastructure enabling the smartphone-assisted semiautomatic treatment of diabetes in mice. A custom-designed home server SmartController was programmed to process wireless signals, enabling a smartphone to regulate hormone production by optically engineered cells implanted in diabetic mice via a far-red light (FRL)-responsive optogenetic interface. To develop this wireless controller network, we designed and implanted hydrogel capsules carrying both engineered cells and wirelessly powered FRL LEDs (light-emitting diodes). In vivo production of a short variant of human glucagon-like peptide 1 (shGLP-1) or mouse insulin by the engineered cells in the hydrogel could be remotely controlled by smartphone programs or a custom-engineered Bluetooth-active glucometer in a semiautomatic, glucose-dependent manner. By combining electronic device-generated digital signals with optogenetically engineered cells, this study provides a step toward translating cell-based therapies into the clinic.
17.

Optogenetic Module for Dichromatic Control of c-di-GMP Signaling.

blue red BphS EB1 E. coli in vitro Immediate control of second messengers Multichromatic
J Bacteriol, 20 Mar 2017 DOI: 10.1128/jb.00014-17 Link to full text
Abstract: Many aspects of bacterial physiology and behavior including motility, surface attachment, and cell cycle, are controlled by the c-di-GMP-dependent signaling pathways on the scale of seconds-to-minutes. Interrogation of such processes in real time requires tools for introducing rapid and reversible changes in intracellular c-di-GMP levels. Inducing expression of genes encoding c-di-GMP synthetic (diguanylate cyclases) and degrading (c-di-GMP phosphodiesterase) enzymes by chemicals may not provide adequate temporal control. In contrast, light-controlled diguanylate cyclases and phosphodiesterases can be quickly activated and inactivated. A red/near-infrared light-regulated diguanylate cyclase, BphS, has been engineered earlier, yet a complementary light-activated c-di-GMP phosphodiesterase has been lacking. In search of such a phosphodiesterase, we investigated two homologous proteins from Allochromatium vinosum and Magnetococcus marinus, designated BldP, which contain C-terminal EAL-BLUF modules, where EAL is a c-di-GMP phosphodiesterase domain and BLUF is a blue light sensory domain. Characterization of the BldP proteins in Escherichia coli and in vitro showed that they possess light-activated c-di-GMP phosphodiesterase activities. Interestingly, light activation in both enzymes was dependent on oxygen levels. The truncated EAL-BLUF fragment from A. vinosum BldP lacked phosphodiesterase activity, whereas a similar fragment from M. marinus BldP, designated EB1, possessed such activity that was highly (>30-fold) upregulated by light. Following light withdrawal, EB1 reverted to the inactive ground state with a half-life of ∼6 min. Therefore, the blue light-activated phosphodiesterase, EB1, can be used in combination with the red/near-infrared light-regulated diguanylate cyclase, BphS, for bidirectional regulation of c-di-GMP-dependent processes in E. coli as well as other bacterial and nonbacterial cells.IMPORTANCE Regulation of motility, attachment to surfaces, cell cycle, and other bacterial processes controlled by the c-di-GMP signaling pathways occurs at a fast (seconds-to-minutes) pace. Interrogating these processes at high temporal and spatial resolution using chemicals is difficult-to-impossible, while optogenetic approaches may prove useful. We identified and characterized a robust, blue light-activated c-di-GMP phosphodiesterase (hydrolase) that complements a previously engineered red/near-infrared light-regulated diguanylate cyclase (c-di-GMP synthase). These two enzymes form a dichromatic module for manipulating intracellular c-di-GMP levels in bacterial and nonbacterial cells.
18.

Optogenetic manipulation of c-di-GMP levels reveals the role of c-di-GMP in regulating aerotaxis receptor activity in Azospirillum brasilense.

blue red BphS EB1 A. brasilense Immediate control of second messengers Multichromatic
J Bacteriol, 6 Mar 2017 DOI: 10.1128/jb.00020-17 Link to full text
Abstract: Bacterial chemotaxis receptors provide the sensory inputs that inform the direction of navigation in changing environments. Recently, we described the bacterial second messenger, c-di-GMP, as a novel regulator of a subclass of chemotaxis receptors. In Azospirillum brasilense, c-di-GMP binds to a chemotaxis receptor, Tlp1, and modulates its signaling function during aerotaxis. Here, we further characterize the role of c-di-GMP in aerotaxis using a novel dichromatic optogenetic system engineered for manipulating intracellular c-di-GMP levels in real time. This system comprises a red/near-infrared light-regulated diguanylate cyclase and a blue-light regulated c-di-GMP phosphodiesterase. It allows generation of transient changes in intracellular c-di-GMP concentrations within seconds of irradiation with appropriate light, which is compatible with the timescale of chemotaxis signaling. We provide experimental evidence that c-di-GMP binding to the Tlp1 receptor activates its signaling function during aerotaxis, which supports the role of transient changes in c-di-GMP levels as a means of adjusting the response of A. brasilense to oxygen gradients. We also show that intracellular c-di-GMP levels in A. brasilense changes with carbon metabolism. Our data support a model whereby c-di-GMP functions to imprint chemotaxis receptors with a record of recent metabolic experience, to adjust their contribution to the signaling output, thus allowing the cells to continually fine-tune chemotaxis sensory perception to their metabolic state.IMPORTANCE Motile bacteria use chemotaxis to change swimming direction in response to changes in environmental conditions. Chemotaxis receptors sense environmental signals and relay sensory information to the chemotaxis machinery, which ultimately controls the swimming pattern of cells. In bacteria studied to date, differential methylation has been known as a mechanism to control the activity of chemotaxis receptors and modulates their contribution to the overall chemotaxis response. Here, we used an optogenetic system to perturb intracellular concentrations of the bacterial second messenger, c-di-GMP, to show that in some chemotaxis receptors, c-di-GMP functions in a similar feedback loop to connect metabolic status of the cells to sensory activity of chemotaxis receptors.
19.

Fast cAMP Modulation of Neurotransmission via Neuropeptide Signals and Vesicle Loading.

blue bPAC (BlaC) C. elegans in vivo Immediate control of second messengers Neuronal activity control
Curr Biol, 2 Feb 2017 DOI: 10.1016/j.cub.2016.12.055 Link to full text
Abstract: Cyclic AMP (cAMP) signaling augments synaptic transmission, but because many targets of cAMP and protein kinase A (PKA) may be involved, mechanisms underlying this pathway remain unclear. To probe this mechanism, we used optogenetic stimulation of cAMP signaling by Beggiatoa-photoactivated adenylyl cyclase (bPAC) in Caenorhabditis elegans motor neurons. Behavioral, electron microscopy (EM), and electrophysiology analyses revealed cAMP effects on both the rate and on quantal size of transmitter release and led to the identification of a neuropeptidergic pathway affecting quantal size. cAMP enhanced synaptic vesicle (SV) fusion by increasing mobilization and docking/priming. cAMP further evoked dense core vesicle (DCV) release of neuropeptides, in contrast to channelrhodopsin (ChR2) stimulation. cAMP-evoked DCV release required UNC-31/Ca(2+)-dependent activator protein for secretion (CAPS). Thus, DCVs accumulated in unc-31 mutant synapses. bPAC-induced neuropeptide signaling acts presynaptically to enhance vAChT-dependent SV loading with acetylcholine, thus causing increased miniature postsynaptic current amplitudes (mPSCs) and significantly enlarged SVs.
20.

Model-guided optogenetic study of PKA signaling in budding yeast.

blue bPAC (BlaC) S. cerevisiae Signaling cascade control Immediate control of second messengers
Mol Biol Cell, 9 Nov 2016 DOI: 10.1091/mbc.e16-06-0354 Link to full text
Abstract: In eukaryotes, protein kinase A (PKA) is a master regulator of cell proliferation and survival. The activity of PKA is subject to elaborate control and exhibits complex time dynamics. To probe the quantitative attributes of PKA dynamics in the yeast Saccharomyces cerevisiae, we developed an optogenetic strategy that uses a photoactivatable adenylate cyclase to achieve real-time regulation of cAMP and the PKA pathway. We capitalize on the precise and rapid control afforded by this optogenetic tool, together with quantitative computational modeling, to study the properties of feedback in the PKA signaling network and dissect the nonintuitive dynamic effects that ensue from perturbing its components. Our analyses reveal that negative feedback channeled through the Ras1/2 GTPase is delayed, pinpointing its time scale and its contribution to the dynamic features of the cAMP/PKA signaling network.
21.

Optical manipulation of the alpha subunits of heterotrimeric G proteins using photoswitchable dimerization systems.

blue red Magnets PhyB/PIF6 Cos-7 HEK293 HeLa Immediate control of second messengers
Sci Rep, 21 Oct 2016 DOI: 10.1038/srep35777 Link to full text
Abstract: Alpha subunits of heterotrimeric G proteins (Gα) are involved in a variety of cellular functions. Here we report an optogenetic strategy to spatially and temporally manipulate Gα in living cells. More specifically, we applied the blue light-induced dimerization system, known as the Magnet system, and an alternative red light-induced dimerization system consisting of Arabidopsis thaliana phytochrome B (PhyB) and phytochrome-interacting factor 6 (PIF6) to optically control the activation of two different classes of Gα (Gαq and Gαs). By utilizing this strategy, we demonstrate successful regulation of Ca(2+) and cAMP using light in mammalian cells. The present strategy is generally applicable to different kinds of Gα and could contribute to expanding possibilities of spatiotemporal regulation of Gα in mammalian cells.
22.

Structural insight into photoactivation of an adenylate cyclase from a photosynthetic cyanobacterium.

blue bPAC (BlaC) euPAC OaPAC E. coli HEK293 in vitro rat hippocampal neurons Control of cytoskeleton / cell motility / cell shape Immediate control of second messengers
Proc Natl Acad Sci USA, 31 May 2016 DOI: 10.1073/pnas.1517520113 Link to full text
Abstract: Cyclic-AMP is one of the most important second messengers, regulating many crucial cellular events in both prokaryotes and eukaryotes, and precise spatial and temporal control of cAMP levels by light shows great promise as a simple means of manipulating and studying numerous cell pathways and processes. The photoactivated adenylate cyclase (PAC) from the photosynthetic cyanobacterium Oscillatoria acuminata (OaPAC) is a small homodimer eminently suitable for this task, requiring only a simple flavin chromophore within a blue light using flavin (BLUF) domain. These domains, one of the most studied types of biological photoreceptor, respond to blue light and either regulate the activity of an attached enzyme domain or change its affinity for a repressor protein. BLUF domains were discovered through studies of photo-induced movements of Euglena gracilis, a unicellular flagellate, and gene expression in the purple bacterium Rhodobacter sphaeroides, but the precise details of light activation remain unknown. Here, we describe crystal structures and the light regulation mechanism of the previously undescribed OaPAC, showing a central coiled coil transmits changes from the light-sensing domains to the active sites with minimal structural rearrangement. Site-directed mutants show residues essential for signal transduction over 45 Å across the protein. The use of the protein in living human cells is demonstrated with cAMP-dependent luciferase, showing a rapid and stable response to light over many hours and activation cycles. The structures determined in this study will assist future efforts to create artificial light-regulated control modules as part of a general optogenetic toolkit.
23.

Optogenetic control of endogenous Ca(2+) channels in vivo.

blue AsLOV2 CRY2/CRY2 Cos-7 HEK293 HeLa hESCs HUVEC mouse astrocytes mouse hippocampal slices mouse in vivo NIH/3T3 primary mouse hippocampal neurons zebrafish in vivo Immediate control of second messengers
Nat Biotechnol, 14 Sep 2015 DOI: 10.1038/nbt.3350 Link to full text
Abstract: Calcium (Ca(2+)) signals that are precisely modulated in space and time mediate a myriad of cellular processes, including contraction, excitation, growth, differentiation and apoptosis. However, study of Ca(2+) responses has been hampered by technological limitations of existing Ca(2+)-modulating tools. Here we present OptoSTIM1, an optogenetic tool for manipulating intracellular Ca(2+) levels through activation of Ca(2+)-selective endogenous Ca(2+) release-activated Ca(2+) (CRAC) channels. Using OptoSTIM1, which combines a plant photoreceptor and the CRAC channel regulator STIM1 (ref. 4), we quantitatively and qualitatively controlled intracellular Ca(2+) levels in various biological systems, including zebrafish embryos and human embryonic stem cells. We demonstrate that activating OptoSTIM1 in the CA1 hippocampal region of mice selectively reinforced contextual memory formation. The broad utility of OptoSTIM1 will expand our mechanistic understanding of numerous Ca(2+)-associated processes and facilitate screening for drug candidates that antagonize Ca(2+) signals.
24.

Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp.

green BeCyclOp (BeGC1) C. elegans in vivo HEK293T Xenopus oocytes Immediate control of second messengers Neuronal activity control
Nat Commun, 8 Sep 2015 DOI: 10.1038/ncomms9046 Link to full text
Abstract: Cyclic GMP (cGMP) signalling regulates multiple biological functions through activation of protein kinase G and cyclic nucleotide-gated (CNG) channels. In sensory neurons, cGMP permits signal modulation, amplification and encoding, before depolarization. Here we implement a guanylyl cyclase rhodopsin from Blastocladiella emersonii as a new optogenetic tool (BeCyclOp), enabling rapid light-triggered cGMP increase in heterologous cells (Xenopus oocytes, HEK293T cells) and in Caenorhabditis elegans. Among five different fungal CyclOps, exhibiting unusual eight transmembrane topologies and cytosolic N-termini, BeCyclOp is the superior optogenetic tool (light/dark activity ratio: 5,000; no cAMP production; turnover (20 °C) ∼17 cGMP s(-1)). Via co-expressed CNG channels (OLF in oocytes, TAX-2/4 in C. elegans muscle), BeCyclOp photoactivation induces a rapid conductance increase and depolarization at very low light intensities. In O2/CO2 sensory neurons of C. elegans, BeCyclOp activation evokes behavioural responses consistent with their normal sensory function. BeCyclOp therefore enables precise and rapid optogenetic manipulation of cGMP levels in cells and animals.
25.

The rhodopsin-guanylyl cyclase of the aquatic fungus Blastocladiella emersonii enables fast optical control of cGMP signaling.

blue green BeCyclOp (BeGC1) bPAC (BlaC) CHO-K1 rat hippocampal neurons Xenopus oocytes Immediate control of second messengers
Sci Signal, 11 Aug 2015 DOI: 10.1126/scisignal.aab0611 Link to full text
Abstract: Blastocladiomycota fungi form motile zoospores that are guided by sensory photoreceptors to areas of optimal light conditions. We showed that the microbial rhodopsin of Blastocladiella emersonii is a rhodopsin-guanylyl cyclase (RhGC), a member of a previously uncharacterized rhodopsin class of light-activated enzymes that generate the second messenger cyclic guanosine monophosphate (cGMP). Upon application of a short light flash, recombinant RhGC converted within 8 ms into a signaling state with blue-shifted absorption from which the dark state recovered within 100 ms. When expressed in Xenopus oocytes, Chinese hamster ovary cells, or mammalian neurons, RhGC generated cGMP in response to green light in a light dose-dependent manner on a subsecond time scale. Thus, we propose RhGC as a versatile tool for the optogenetic analysis of cGMP-dependent signaling processes in cell biology and the neurosciences.
Submit a new publication to our database