Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 13 of 13 results
1.

Mapping Local and Global Liquid Phase Behavior in Living Cells Using Photo-Oligomerizable Seeds.

blue iLID C. elegans in vivo HEK293 HeLa NIH/3T3 S. cerevisiae U-2 OS Organelle manipulation
Cell, 29 Nov 2018 DOI: 10.1016/j.cell.2018.10.048 Link to full text
Abstract: Liquid-liquid phase separation plays a key role in the assembly of diverse intracellular structures. However, the biophysical principles by which phase separation can be precisely localized within subregions of the cell are still largely unclear, particularly for low-abundance proteins. Here, we introduce an oligomerizing biomimetic system, ‘‘Corelets,’’ and utilize its rapid and quantitative light-controlled tunability to map full intracellular phase diagrams, which dictate the concentrations at which phase separation occurs and the transition mechanism, in a protein sequence dependent manner. Surprisingly, both experiments and simulations show that while intracellular concentrations may be insufficient for global phase separation, sequestering protein ligands to slowly diffusing nucleation centers can move the cell into a different region of the phase diagram, resulting in localized phase separation. This diffusive capture mechanism liberates the cell from the constraints of global protein abundance and is likely exploited to pattern condensates associated with diverse biological processes.
2.

Liquid Nuclear Condensates Mechanically Sense and Restructure the Genome.

blue CRY2/CRY2 iLID HEK293 HEK293T NIH/3T3 U-2 OS Organelle manipulation
Cell, 29 Nov 2018 DOI: 10.1016/j.cell.2018.10.057 Link to full text
Abstract: Phase transitions involving biomolecular liquids are a fundamental mechanism underlying intracellular organization. In the cell nucleus, liquid-liquid phase separation of intrinsically disordered proteins (IDPs) is implicated in assembly of the nucleolus, as well as transcriptional clusters, and other nuclear bodies. However, it remains unclear whether and how physical forces associated with nucleation, growth, and wetting of liquid condensates can directly restructure chromatin. Here, we use CasDrop, a novel CRISPR-Cas9-based optogenetic technology, to show that various IDPs phase separate into liquid condensates that mechanically exclude chromatin as they grow and preferentially form in low-density, largely euchromatic regions. A minimal physical model explains how this stiffness sensitivity arises from lower mechanical energy associated with deforming softer genomic regions. Targeted genomic loci can nonetheless be mechanically pulled together through surface tension-driven coalescence. Nuclear condensates may thus function as mechanoactive chromatin filters, physically pulling in targeted genomic loci while pushing out non-targeted regions of the neighboring genome.
3.

Engaging myosin VI tunes motility, morphology, and identity in endocytosis.

blue TULIP HeLa Organelle manipulation
Traffic, 4 Jun 2018 DOI: 10.1111/tra.12583 Link to full text
Abstract: While unconventional myosins interact with different stages of the endocytic pathway, they are ascribed a transport function that is secondary to the protein complexes that control organelle identity. Endosomes are subject to a dynamic, continuous flux of proteins that control their characteristic properties, including their motility within the cell. Efforts to describe the changes in identity of this compartment have largely focused on the adaptors present on the compartment and not on the motile properties of the compartment itself. In this study, we use a combination of optogenetic and chemical-dimerization strategies to target exogenous myosin VI to early endosomes, and probe its influence on organelle motility, morphology, and identity. Our analysis across time scales suggests a model wherein the artificial engagement of myosin VI motility on early endosomes restricts microtubule-based motion, followed by morphological changes characterized by the rapid condensation and disintegration of organelles, ultimately leading to the enhanced overlap of markers that demarcate endosomal compartments. Together, our findings show that synthetic engagement of myosin VI motility is sufficient to alter organelle homeostasis in the endocytic pathway. This article is protected by copyright. All rights reserved.
4.

Protein Phase Separation Provides Long-Term Memory of Transient Spatial Stimuli.

blue CRY2/CRY2 PixD/PixE NIH/3T3 Signaling cascade control Organelle manipulation
Cell Syst, 24 May 2018 DOI: 10.1016/j.cels.2018.05.002 Link to full text
Abstract: Protein/RNA clusters arise frequently in spatially regulated biological processes, from the asymmetric distribution of P granules and PAR proteins in developing embryos to localized receptor oligomers in migratory cells. This co-occurrence suggests that protein clusters might possess intrinsic properties that make them a useful substrate for spatial regulation. Here, we demonstrate that protein droplets show a robust form of spatial memory, maintaining the spatial pattern of an inhibitor of droplet formation long after it has been removed. Despite this persistence, droplets can be highly dynamic, continuously exchanging monomers with the diffuse phase. We investigate the principles of biophysical spatial memory in three contexts: a computational model of phase separation; a novel optogenetic system where light can drive rapid, localized dissociation of liquid-like protein droplets; and membrane-localized signal transduction from clusters of receptor tyrosine kinases. Our results suggest that the persistent polarization underlying many cellular and developmental processes could arise through a simple biophysical process, without any additional biochemical feedback loops.
5.

Optogenetic Control of Endoplasmic Reticulum-Mitochondria Tethering.

blue near-infrared BphP1/Q-PAS1 FKF1/GI iLID Magnets HEK293T NIH/3T3 primary mouse cortical neurons Organelle manipulation
ACS Synth Biol, 4 Dec 2017 DOI: 10.1021/acssynbio.7b00248 Link to full text
Abstract: The organelle interface emerges as a dynamic platform for a variety of biological responses. However, their study has been limited by the lack of tools to manipulate their occurrence in live cells spatiotemporally. Here, we report the development of a genetically encoded light-inducible tethering (LIT) system allowing the induction of contacts between endoplasmic reticulum (ER) and mitochondria, taking advantage of a pair of light-dependent heterodimerization called an iLID system. We demonstrate that the iLID-based LIT approach enables control of ER-mitochondria tethering with high spatiotemporal precision in various cell types including primary neurons, which will facilitate the functional study of ER-mitochondrial contacts.
6.

Intracellular production of hydrogels and synthetic RNA granules by multivalent molecular interactions.

blue iLID Cos-7 Organelle manipulation
Nat Mater, 6 Nov 2017 DOI: 10.1038/nmat5006 Link to full text
Abstract: Some protein components of intracellular non-membrane-bound entities, such as RNA granules, are known to form hydrogels in vitro. The physico-chemical properties and functional role of these intracellular hydrogels are difficult to study, primarily due to technical challenges in probing these materials in situ. Here, we present iPOLYMER, a strategy for a rapid induction of protein-based hydrogels inside living cells that explores the chemically inducible dimerization paradigm. Biochemical and biophysical characterizations aided by computational modelling show that the polymer network formed in the cytosol resembles a physiological hydrogel-like entity that acts as a size-dependent molecular sieve. We functionalize these polymers with RNA-binding motifs that sequester polyadenine-containing nucleotides to synthetically mimic RNA granules. These results show that iPOLYMER can be used to synthetically reconstitute the nucleation of biologically functional entities, including RNA granules in intact cells.
7.

Optical control of membrane tethering and interorganellar communication at nanoscales.

blue AsLOV2 Cos-7 HeLa in vitro Organelle manipulation
Chem Sci, 31 May 2017 DOI: 10.1039/c7sc01115f Link to full text
Abstract: Endoplasmic reticulum (ER) forms an extensive intracellular membranous network in eukaryotes that dynamically connects and communicates with diverse subcellular compartments such as plasma membrane (PM) through membrane contact sites (MCSs), with the inter-membrane gaps separated by a distance of 10-40 nm. Phosphoinositides (PI) constitute an important class of cell membrane phospholipids shared by many MCSs to regulate a myriad of cellular events, including membrane trafficking, calcium homeostasis and lipid metabolism. By installing photosensitivity into a series of engineered PI-binding domains with minimal sizes, we have created an optogenetic toolkit (designated as 'OptoPB') to enable rapid and reversible control of protein translocation and inter-membrane tethering at MCSs. These genetically-encoded, single-component tools can be used as scaffolds for grafting lipid-binding domains to dissect molecular determinants that govern protein-lipid interactions in living cells. Furthermore, we have demonstrated the use of OptoPB as a versatile fusion tag to photomanipulate protein translocation toward PM for reprogramming of PI metabolism. When tethered to the ER membrane with the insertion of flexible spacers, OptoPB can be applied to reversibly photo-tune the gap distances at nanometer scales between the two organellar membranes at MCSs, and to gauge the distance requirement for the free diffusion of protein complexes into MCSs. Our modular optical tools will find broad applications in non-invasive and remote control of protein subcellular localization and interorganellar contact sites that are critical for cell signaling.
8.

A Phytochrome-Derived Photoswitch for Intracellular Transport.

blue red PhyB/PIF6 TULIP Cos-7 U-2 OS Organelle manipulation Multichromatic
ACS Synth Biol, 30 Mar 2017 DOI: 10.1021/acssynbio.6b00333 Link to full text
Abstract: Cells depend on the proper positioning of their organelles, suggesting that active manipulation of organelle positions can be used to explore spatial cell biology and to restore cellular defects caused by organelle misplacement. Recently, blue-light dependent recruitment of specific motors to selected organelles has been shown to alter organelle motility and positioning, but these approaches lack rapid and active reversibility. The light-dependent interaction of phytochrome B with its interacting factors has been shown to function as a photoswitch, dimerizing under red light and dissociating under far-red light. Here we engineer phytochrome domains into photoswitches for intracellular transport that enable the reversible interaction between organelles and motor proteins. Using patterned illumination and live-cell imaging, we demonstrate that this system provides unprecedented spatiotemporal control. We also demonstrate that it can be used in combination with a blue-light dependent system to independently control the positioning of two different organelles. Precise optogenetic control of organelle motility and positioning will provide a better understanding of and control over the spatial biology of cells.
9.

Investigations of human myosin VI targeting using optogenetically controlled cargo loading.

blue AsLOV2 HeLa in vitro Control of cytoskeleton / cell motility / cell shape Organelle manipulation
Proc Natl Acad Sci USA, 13 Feb 2017 DOI: 10.1073/pnas.1614716114 Link to full text
Abstract: Myosins play countless critical roles in the cell, each requiring it to be activated at a specific location and time. To control myosin VI with this specificity, we created an optogenetic tool for activating myosin VI by fusing the light-sensitive Avena sativa phototropin1 LOV2 domain to a peptide from Dab2 (LOVDab), a myosin VI cargo protein. Our approach harnesses the native targeting and activation mechanism of myosin VI, allowing direct inferences on myosin VI function. LOVDab robustly recruits human full-length myosin VI to various organelles in vivo and hinders peroxisome motion in a light-controllable manner. LOVDab also activates myosin VI in an in vitro gliding filament assay. Our data suggest that protein and lipid cargoes cooperate to activate myosin VI, allowing myosin VI to integrate Ca(2+), lipid, and protein cargo signals in the cell to deploy in a site-specific manner.
10.

Spatiotemporal Control of Intracellular Phase Transitions Using Light-Activated optoDroplets.

blue CRY2olig HEK293T NIH/3T3 Organelle manipulation
Cell, 29 Dec 2016 DOI: 10.1016/j.cell.2016.11.054 Link to full text
Abstract: Phase transitions driven by intrinsically disordered protein regions (IDRs) have emerged as a ubiquitous mechanism for assembling liquid-like RNA/protein (RNP) bodies and other membrane-less organelles. However, a lack of tools to control intracellular phase transitions limits our ability to understand their role in cell physiology and disease. Here, we introduce an optogenetic platform that uses light to activate IDR-mediated phase transitions in living cells. We use this "optoDroplet" system to study condensed phases driven by the IDRs of various RNP body proteins, including FUS, DDX4, and HNRNPA1. Above a concentration threshold, these constructs undergo light-activated phase separation, forming spatiotemporally definable liquid optoDroplets. FUS optoDroplet assembly is fully reversible even after multiple activation cycles. However, cells driven deep within the phase boundary form solid-like gels that undergo aging into irreversible aggregates. This system can thus elucidate not only physiological phase transitions but also their link to pathological aggregates.
11.

Light-controlled intracellular transport in Caenorhabditis elegans.

blue TULIP C. elegans in vivo Organelle manipulation
Curr Biol, 22 Feb 2016 DOI: 10.1016/j.cub.2015.12.016 Link to full text
Abstract: To establish and maintain their complex morphology and function, neurons and other polarized cells exploit cytoskeletal motor proteins to distribute cargoes to specific compartments. Recent studies in cultured cells have used inducible motor protein recruitment to explore how different motors contribute to polarized transport and to control the subcellular positioning of organelles. Such approaches also seem promising avenues for studying motor activity and organelle positioning within more complex cellular assemblies, but their applicability to multicellular in vivo systems has so far remained unexplored. Here, we report the development of an optogenetic organelle transport strategy in the in vivo model system Caenorhabditis elegans. We demonstrate that movement and pausing of various organelles can be achieved by recruiting the proper cytoskeletal motor protein with light. In neurons, we find that kinesin and dynein exclusively target the axon and dendrite, respectively, revealing the basic principles for polarized transport. In vivo control of motor attachment and organelle distributions will be widely useful in exploring the mechanisms that govern the dynamic morphogenesis of cells and tissues, within the context of a developing animal.
12.

Optogenetic control of molecular motors and organelle distributions in cells.

blue CRY2/CIB1 Cos-7 Organelle manipulation
Chem Biol, 9 May 2015 DOI: 10.1016/j.chembiol.2015.04.014 Link to full text
Abstract: Intracellular transport and distribution of organelles play important roles in diverse cellular functions, including cell polarization, intracellular signaling, cell survival, and apoptosis. Here, we report an optogenetic strategy to control the transport and distribution of organelles by light. This is achieved by optically recruiting molecular motors onto organelles through the heterodimerization of Arabidopsis thaliana cryptochrome 2 (CRY2) and its interacting partner CIB1. CRY2 and CIB1 dimerize within subseconds upon exposure to blue light, which requires no exogenous ligands and low intensity of light. We demonstrate that mitochondria, peroxisomes, and lysosomes can be driven toward the cell periphery upon light-induced recruitment of kinesin, or toward the cell nucleus upon recruitment of dynein. Light-induced motor recruitment and organelle movements are repeatable, reversible, and can be achieved at subcellular regions. This light-controlled organelle redistribution provides a new strategy for studying the causal roles of organelle transport and distribution in cellular functions in living cells.
13.

Optogenetic control of organelle transport and positioning.

blue CRY2/CIB1 TULIP Cos-7 rat hippocampal neurons Control of cytoskeleton / cell motility / cell shape Organelle manipulation
Nature, 7 Jan 2015 DOI: 10.1038/nature14128 Link to full text
Abstract: Proper positioning of organelles by cytoskeleton-based motor proteins underlies cellular events such as signalling, polarization and growth. For many organelles, however, the precise connection between position and function has remained unclear, because strategies to control intracellular organelle positioning with spatiotemporal precision are lacking. Here we establish optical control of intracellular transport by using light-sensitive heterodimerization to recruit specific cytoskeletal motor proteins (kinesin, dynein or myosin) to selected cargoes. We demonstrate that the motility of peroxisomes, recycling endosomes and mitochondria can be locally and repeatedly induced or stopped, allowing rapid organelle repositioning. We applied this approach in primary rat hippocampal neurons to test how local positioning of recycling endosomes contributes to axon outgrowth and found that dynein-driven removal of endosomes from axonal growth cones reversibly suppressed axon growth, whereas kinesin-driven endosome enrichment enhanced growth. Our strategy for optogenetic control of organelle positioning will be widely applicable to explore site-specific organelle functions in different model systems.
Submit a new publication to our database