Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 25 of 68 results

Optotheranostic Nanosystem with Phone Visual Diagnosis and Optogenetic Microbial Therapy for Ulcerative Colitis At-Home Care.

blue YtvA E. coli Transgene expression
ACS Nano, 5 Apr 2021 DOI: 10.1021/acsnano.1c00135 Link to full text
Abstract: Ulcerative colitis (UC) is a relapsing disorder characterized by chronic inflammation of the intestinal tract. However, the home care of UC based on remote monitoring, due to the operational complexity and time-consuming procedure, restrain its widespread applications. Here we constructed an optotheranostic nanosystem for self-diagnosis and long-acting mitigations of UC at home. The system included two major modules: (i) A disease prescreening module mediated by smartphone optical sensing. (ii) Disease real-time intervention module mediated by an optogenetic engineered bacteria system. Recombinant Escherichia coli Nissle 1917 (EcN) secreted interleukin-10 (IL-10) could downregulate inflammatory cascades and matrix metalloproteinases; it is a candidate for use in the therapeutic intervention of UC. The results showed that the Detector was able to analyze, report, and share the detection results in less than 1 min, and the limit of detection was 15 ng·mL-1. Besides, the IL-10-secreting EcN treatment suppressed the intestinal inflammatory response in UC mice and protected the intestinal mucosa against injury. The optotheranostic nanosystems enabled solutions to diagnose and treat disease at home, which promotes a mobile health service development.

Light-induced local gene expression in primary chick cell culture system.

blue VVD primary chick limb mesenchyme cells Transgene expression
Dev Growth Differ, 18 Mar 2021 DOI: 10.1111/dgd.12721 Link to full text
Abstract: The ability to manipulate gene expression at a specific region in a tissue or cell culture system is critical for analysis of target gene function. For chick embryos/cells, several gene introduction/induction methods have been established such as those involving retrovirus, electroporation, sonoporation, and lipofection. However, these methods have limitations in the accurate induction of localized gene expression. Here we demonstrate the effective application of a recently developed light-dependent gene expression induction system (LightOn system) using the Neurospora crassa photoreceptor Vivid fused with a Gal4 DNA binding domain and p65 activation domain (GAVPO) that alters its activity in response to light stimulus in a primary chicken cell culture system. We show that the gene expression level and induction specificity in this system are strongly dependent on the light irradiation conditions. Especially, the irradiation interval is an important parameter for modulating gene expression; for shorter time intervals, higher induction specificity can be achieved. Further, by adjusting light irradiation conditions, the expression level in primary chicken cells can be regulated in a multiple step manner, in contrast to the binary expression seen for gene disruption or introduction (i.e., null or overexpression). This result indicates that the light-dependent expression control method can be a useful technique in chick models to examine how gene funtion is affected by gradual changes in gene expression levels. We applied this light-induction system to regulate Sox9 expression in cultures of chick limb mesenchyme cells and showed that induced SOX9 protein could modulate expression of downstream genes.

A single-chain and fast-responding light-inducible Cre recombinase as a novel optogenetic switch.

blue AsLOV2 CRY2/CIB1 Magnets HEK293 S. cerevisiae Transgene expression
Elife, 23 Feb 2021 DOI: 10.7554/elife.61268 Link to full text
Abstract: Optogenetics enables genome manipulations with high spatiotemporal resolution, opening exciting possibilities for fundamental and applied biological research. Here, we report the development of LiCre, a novel light-inducible Cre recombinase. LiCre is made of a single flavin-containing protein comprising the AsLOV2 photoreceptor domain of Avena sativa fused to a Cre variant carrying destabilizing mutations in its N-terminal and C-terminal domains. LiCre can be activated within minutes of illumination with blue light, without the need of additional chemicals. When compared to existing photoactivatable Cre recombinases based on two split units, LiCre displayed faster and stronger activation by light as well as a lower residual activity in the dark. LiCre was efficient both in yeast, where it allowed us to control the production of β-carotene with light, and in human cells. Given its simplicity and performances, LiCre is particularly suited for fundamental and biomedical research, as well as for controlling industrial bioprocesses.

TAEL 2.0: An Improved Optogenetic Expression System for Zebrafish.

blue EL222 zebrafish in vivo Transgene expression
Zebrafish, 8 Feb 2021 DOI: 10.1089/zeb.2020.1951 Link to full text
Abstract: Inducible gene expression systems are valuable tools for studying biological processes. We previously developed an optogenetic gene expression system called TAEL that is optimized for use in zebrafish. When illuminated with blue light, TAEL transcription factors dimerize and activate gene expression downstream of the TAEL-responsive C120 promoter. By using light as the inducing agent, the TAEL/C120 system overcomes limitations of traditional inducible expression systems by enabling fine spatial and temporal regulation of gene expression. In this study, we describe ongoing efforts to improve the TAEL/C120 system. We made modifications to both the TAEL transcriptional activator and the C120 regulatory element, collectively referred to as TAEL 2.0. We demonstrate that TAEL 2.0 consistently induces higher levels of reporter gene expression and at a faster rate, but with comparable background and toxicity as the original TAEL system. With these improvements, we were able to create functional stable transgenic lines to express the TAEL 2.0 transcription factor either ubiquitously or with a tissue-specific promoter. We demonstrate that the ubiquitous line in particular can be used to induce expression at late embryonic and larval stages, addressing a major deficiency of the original TAEL system. This improved optogenetic expression system will be a broadly useful resource for the zebrafish community.

Real-Time Optogenetics System for Controlling Gene Expression Using a Model-Based Design.

green CcaS/CcaR E. coli in silico Transgene expression
Anal Chem, 5 Feb 2021 DOI: 10.1021/acs.analchem.0c04594 Link to full text
Abstract: Optimization of engineered biological systems requires precise control over the rates and timing of gene expression. Optogenetics is used to dynamically control gene expression as an alternative to conventional chemical-based methods since it provides a more convenient interface between digital control software and microbial culture. Here, we describe the construction of a real-time optogenetics platform, which performs closed-loop control over the CcaR-CcaS two-plasmid system in Escherichia coli. We showed the first model-based design approach by constructing a nonlinear representation of the CcaR-CcaS system, tuned the model through open-loop experimentation to capture the experimental behavior, and applied the model in silico to inform the necessary changes to build a closed-loop optogenetic control system. Our system periodically induces and represses the CcaR-CcaS system while recording optical density and fluorescence using image processing techniques. We highlight the facile nature of constructing our system and how our model-based design approach will potentially be used to model other systems requiring closed-loop optogenetic control.

Transient light-activated gene expression in Chinese hamster ovary cells.

blue CRY2/CIB1 CHO-DG44 CHO-K1 Transgene expression
BMC Biotechnol, 4 Feb 2021 DOI: 10.1186/s12896-021-00670-1 Link to full text
Abstract: Chinese hamster ovary (CHO) cells are widely used for industrial production of biopharmaceuticals. Many genetic, chemical, and environmental approaches have been developed to modulate cellular pathways to improve titers. However, these methods are often irreversible or have off-target effects. Development of techniques which are precise, tunable, and reversible will facilitate temporal regulation of target pathways to maximize titers. In this study, we investigate the use of optogenetics in CHO cells. The light-activated CRISPR-dCas9 effector (LACE) system was first transiently transfected to express eGFP in a light-inducible manner. Then, a stable system was tested using lentiviral transduction.

Transcription activation is enhanced by multivalent interactions independent of liquid-liquid phase separation.

blue CRY2/CIB1 HeLa U-2 OS Transgene expression
bioRxiv, 28 Jan 2021 DOI: 10.1101/2021.01.27.428421 Link to full text
Abstract: Transcription factors (TFs) consist of a DNA binding and an activation domain (AD) that are considered to be independent and exchangeable modules. However, recent studies conclude that also the physico-chemical properties of the AD can control TF assembly at chromatin via driving a phase separation into “transcriptional condensates”. Here, we dissected the mechanism of transcription activation at a reporter gene array with real-time single-cell fluorescence microscopy readouts. Our comparison of different synthetic TFs reveals that the phase separation propensity of the AD correlates with high transcription activation capacity by increasing binding site occupancy, residence time and the recruitment of co-activators. However, we find that the actual formation of phase separated TF liquid-like droplets has a neutral or inhibitory effect on transcription induction. Thus, our study suggests that the ability of a TF to phase separate reflects the functionally important property of the AD to establish multivalent interactions but does not by itself enhance transcription.

A synthetic BRET-based optogenetic device for pulsatile transgene expression enabling glucose homeostasis in mice.

blue CRY2/CIB1 LOVTRAP VVD A549 Cos-7 HEK293 HEK293T HeLa mouse in vivo NCI-H1299 PC-3 U-87 MG Transgene expression
Nat Commun, 27 Jan 2021 DOI: 10.1038/s41467-021-20913-1 Link to full text
Abstract: Pulsing cellular dynamics in genetic circuits have been shown to provide critical capabilities to cells in stress response, signaling and development. Despite the fascinating discoveries made in the past few years, the mechanisms and functional capabilities of most pulsing systems remain unclear, and one of the critical challenges is the lack of a technology that allows pulsatile regulation of transgene expression both in vitro and in vivo. Here, we describe the development of a synthetic BRET-based transgene expression (LuminON) system based on a luminescent transcription factor, termed luminGAVPO, by fusing NanoLuc luciferase to the light-switchable transcription factor GAVPO. luminGAVPO allows pulsatile and quantitative activation of transgene expression via both chemogenetic and optogenetic approaches in mammalian cells and mice. Both the pulse amplitude and duration of transgene expression are highly tunable via adjustment of the amount of furimazine. We further demonstrated LuminON-mediated blood-glucose homeostasis in type 1 diabetic mice. We believe that the BRET-based LuminON system with the pulsatile dynamics of transgene expression provides a highly sensitive tool for precise manipulation in biological systems that has strong potential for application in diverse basic biological studies and gene- and cell-based precision therapies in the future.

Optogenetics in Sinorhizobium meliloti Enables Spatial Control of Exopolysaccharide Production and Biofilm Structure.

blue EL222 S. meliloti Transgene expression Control of cell-cell / cell-material interactions
ACS Synth Biol, 19 Jan 2021 DOI: 10.1021/acssynbio.0c00498 Link to full text
Abstract: Microorganisms play a vital role in shaping the soil environment and enhancing plant growth by interacting with plant root systems. Because of the vast diversity of cell types involved, combined with dynamic and spatial heterogeneity, identifying the causal contribution of a defined factor, such as a microbial exopolysaccharide (EPS), remains elusive. Synthetic approaches that enable orthogonal control of microbial pathways are a promising means to dissect such complexity. Here we report the implementation of a synthetic, light-activated, transcriptional control platform using the blue-light responsive DNA binding protein EL222 in the nitrogen fixing soil bacterium Sinorhizobium meliloti. By fine-tuning the system, we successfully achieved optical control of an EPS production pathway without significant basal expression under noninducing (dark) conditions. Optical control of EPS recapitulated important behaviors such as a mucoid plate phenotype and formation of structured biofilms, enabling spatial control of biofilm structures in S. meliloti. The successful implementation of optically controlled gene expression in S. meliloti enables systematic investigation of how genotype and microenvironmental factors together shape phenotype in situ.

Synthetic gene networks recapitulate dynamic signal decoding and differential gene expression.

blue CRY2/CIB1 EL222 S. cerevisiae Transgene expression
bioRxiv, 7 Jan 2021 DOI: 10.1101/2021.01.07.425755 Link to full text
Abstract: Cells live in constantly changing environments and employ dynamic signaling pathways to transduce information about the signals they encounter. However, the mechanisms by which dynamic signals are decoded into appropriate gene expression patterns remain poorly understood. Here, we devise networked optogenetic pathways that achieve novel dynamic signal processing functions that recapitulate cellular information processing. Exploiting light-responsive transcriptional regulators with differing response kinetics, we build a falling-edge pulse-detector and show that this circuit can be employed to demultiplex dynamically encoded signals. We combine this demultiplexer with dCas9-based gene networks to construct pulsatile-signal filters and decoders. Applying information theory, we show that dynamic multiplexing significantly increases the information transmission capacity from signal to gene expression state. Finally, we use dynamic multiplexing for precise multidimensional regulation of a heterologous metabolic pathway. Our results elucidate design principles of dynamic information processing and provide original synthetic systems capable of decoding complex signals for biotechnological applications.

Liquid-liquid phase separation of light-inducible transcription factors increases transcription activation in mammalian cells and mice.

blue red CRY2/CIB1 CRY2/CRY2 PhyB/PIF6 HEK293 mouse in vivo U-2 OS Transgene expression
Sci Adv, 1 Jan 2021 DOI: 10.1126/sciadv.abd3568 Link to full text
Abstract: Light-inducible gene switches represent a key strategy for the precise manipulation of cellular events in fundamental and applied research. However, the performance of widely used gene switches is limited due to low tissue penetrance and possible phototoxicity of the light stimulus. To overcome these limitations, we engineer optogenetic synthetic transcription factors to undergo liquid-liquid phase separation in close spatial proximity to promoters. Phase separation of constitutive and optogenetic synthetic transcription factors was achieved by incorporation of intrinsically disordered regions. Supported by a quantitative mathematical model, we demonstrate that engineered transcription factor droplets form at target promoters and increase gene expression up to fivefold. This increase in performance was observed in multiple mammalian cells lines as well as in mice following in situ transfection. The results of this work suggest that the introduction of intrinsically disordered domains is a simple yet effective means to boost synthetic transcription factor activity.

Engineering an Optogenetic CRISPRi Platform for Improved Chemical Production.

blue EL222 E. coli Transgene expression
ACS Synth Biol, 24 Dec 2020 DOI: 10.1021/acssynbio.0c00488 Link to full text
Abstract: Microbial synthesis of chemicals typically requires the redistribution of metabolic flux toward the synthesis of targeted products. Dynamic control is emerging as an effective approach for solving the hurdles mentioned above. As light could control the cell behavior in a spatial and temporal manner, the optogenetic-CRISPR interference (opto-CRISPRi) technique that allocates the metabolic resources according to different optical signal frequencies will enable bacteria to be controlled between the growth phase and the production stage. In this study, we applied a blue light-sensitive protein EL222 to regulate the expression of the dCpf1-mediated CRISPRi system that turns off the competitive pathways and redirects the metabolic flux toward the heterologous muconic acid synthesis in Escherichia coli. We found that the opto-CRISPRi system dynamically regulating the suppression of the central metabolism and competitive pathways could increase the muconic acid production by 130%. These results demonstrated that the opto-CRISPRi platform is an effective method for enhancing chemical synthesis with broad utilities.

Optogenetic control of gut bacterial metabolism to promote longevity.

green CcaS/CcaR E. coli Transgene expression
Elife, 16 Dec 2020 DOI: 10.7554/elife.56849 Link to full text
Abstract: Gut microbial metabolism is associated with host longevity. However, because it requires direct manipulation of microbial metabolism in situ, establishing a causal link between these two processes remains challenging. We demonstrate an optogenetic method to control gene expression and metabolite production from bacteria residing in the host gut. We genetically engineer an Escherichia coli strain that secretes colanic acid (CA) under the quantitative control of light. Using this optogenetically-controlled strain to induce CA production directly in the Caenorhabditis elegans gut, we reveal the local effect of CA in protecting intestinal mitochondria from stress-induced hyper-fragmentation. We also demonstrate that the lifespan-extending effect of this strain is positively correlated with the intensity of green light, indicating a dose-dependent CA benefit on the host. Thus, optogenetics can be used to achieve quantitative and temporal control of gut bacterial metabolism in order to reveal its local and systemic effects on host health and aging.

Improved Photocleavable Proteins with Faster and More Efficient Dissociation.

violet PhoCl HeLa Transgene expression Cell death
bioRxiv, 10 Dec 2020 DOI: 10.1101/2020.12.10.419556 Link to full text
Abstract: The photocleavable protein (PhoCl) is a green-to-red photoconvertible fluorescent protein that, when illuminated with violet light, undergoes main chain cleavage followed by spontaneous dissociation of the resulting fragments. The first generation PhoCl (PhoCl1) exhibited a relative slow rate of dissociation, potentially limiting its utilities for optogenetic control of cell physiology. In this work, we report the X-ray crystal structures of the PhoCl1 green state, red state, and cleaved empty barrel. Using structure-guided engineering and directed evolution, we have developed PhoCl2c with higher contrast ratio and PhoCl2f with faster dissociation. We characterized the performance of these new variants as purified proteins and expressed in cultured cells. Our results demonstrate that PhoCl2 variants exhibit faster and more efficient dissociation, which should enable improved optogenetic manipulations of protein localization and protein-protein interactions in living cells.

Design of smart antibody mimetics with photosensitive switches.

blue AsLOV2 HEK293T HeLa Transgene expression Nucleic acid editing
bioRxiv, 4 Dec 2020 DOI: 10.1101/2020.12.03.410936 Link to full text
Abstract: As two prominent examples of intracellular single-domain antibodies or antibody mimetics derived from synthetic protein scaffolds, monobodies and nanobodies are gaining wide applications in cell biology, structural biology, synthetic immunology, and theranostics. We introduce herein a generally-applicable method to engineer light-controllable monobodies and nanobodies, designated as moonbody and sunbody, respectively. These engineered antibody-like modular domains enable rapid and reversible antibody-antigen recognition by utilizing light. By paralleled insertion of two LOV2 modules into a single sunbody and the use of bivalent sunbodies, we substantially enhance the range of dynamic changes of photo-switchable sunbodies. Furthermore, we demonstrate the use of moonbodies or sunbodies to precisely control protein degradation, gene transcription, and base editing by harnessing the power of light.

Design and Characterization of Rapid Optogenetic Circuits for Dynamic Control in Yeast Metabolic Engineering.

blue EL222 S. cerevisiae Transgene expression Endogenous gene expression
ACS Synth Biol, 24 Nov 2020 DOI: 10.1021/acssynbio.0c00305 Link to full text
Abstract: The use of optogenetics in metabolic engineering for light-controlled microbial chemical production raises the prospect of utilizing control and optimization techniques routinely deployed in traditional chemical manufacturing. However, such mechanisms require well-characterized, customizable tools that respond fast enough to be used as real-time inputs during fermentations. Here, we present OptoINVRT7, a new rapid optogenetic inverter circuit to control gene expression in Saccharomyces cerevisiae. The circuit induces gene expression in only 0.6 h after switching cells from light to darkness, which is at least 6 times faster than previous OptoINVRT optogenetic circuits used for chemical production. In addition, we introduce an engineered inducible GAL1 promoter (PGAL1-S), which is stronger than any constitutive or inducible promoter commonly used in yeast. Combining OptoINVRT7 with PGAL1-S achieves strong and light-tunable levels of gene expression with as much as 132.9 ± 22.6-fold induction in darkness. The high performance of this new optogenetic circuit in controlling metabolic enzymes boosts production of lactic acid and isobutanol by more than 50% and 15%, respectively. The strength and controllability of OptoINVRT7 and PGAL1-S open the door to applying process control tools to engineered metabolisms to improve robustness and yields in microbial fermentations for chemical production.

Upconversion optogenetic micro-nanosystem optically controls the secretion of light-responsive bacteria for systemic immunity regulation.

blue YtvA E. coli L. lactis Transgene expression
Commun Biol, 9 Oct 2020 DOI: 10.1038/s42003-020-01287-4 Link to full text
Abstract: Chemical molecules specifically secreted into the blood and targeted tissues by intestinal microbiota can effectively affect the associated functions of the intestine especially immunity, representing a new strategy for immune-related diseases. However, proper ways of regulating the secretion metabolism of specific strains still remain to be established. In this article, an upconversion optogenetic micro-nanosystem was constructed to effectively regulate the specific secretion of engineered bacteria. The system included two major modules: (i) Modification of secretory light-responsive engineered bacteria. (ii) Optical sensing mediated by upconversion optogenetic micro-nanosystem. This system could regulate the efficient secretion of immune factors by engineered bacteria through optical manipulation. Inflammatory bowel disease and subcutaneously transplanted tumors were selected to verify the effectiveness of the system. Our results showed that the endogenous factor TGF-β1 could be controllably secreted to suppress the intestinal inflammatory response. Additionally, regulatory secretion of IFN-γ was promoted to slow the progression of B16F10 tumor.

Optoribogenetic control of regulatory RNA molecules.

blue PAL HEK293 Cell cycle control Transgene expression
Nat Commun, 24 Sep 2020 DOI: 10.1038/s41467-020-18673-5 Link to full text
Abstract: Short regulatory RNA molecules underpin gene expression and govern cellular state and physiology. To establish an alternative layer of control over these processes, we generated chimeric regulatory RNAs that interact reversibly and light-dependently with the light-oxygen-voltage photoreceptor PAL. By harnessing this interaction, the function of micro RNAs (miRs) and short hairpin (sh) RNAs in mammalian cells can be regulated in a spatiotemporally precise manner. The underlying strategy is generic and can be adapted to near-arbitrary target sequences. Owing to full genetic encodability, it establishes optoribogenetic control of cell state and physiology. The method stands to facilitate the non-invasive, reversible and spatiotemporally resolved study of regulatory RNAs and protein function in cellular and organismal environments.

Optogenetic control of the lac operon for bacterial chemical and protein production.

blue YtvA E. coli Transgene expression Endogenous gene expression
Nat Chem Biol, 7 Sep 2020 DOI: 10.1038/s41589-020-0639-1 Link to full text
Abstract: Control of the lac operon with isopropyl β-D-1-thiogalactopyranoside (IPTG) has been used to regulate gene expression in Escherichia coli for countless applications, including metabolic engineering and recombinant protein production. However, optogenetics offers unique capabilities, such as easy tunability, reversibility, dynamic induction strength and spatial control, that are difficult to obtain with chemical inducers. We have developed a series of circuits for optogenetic regulation of the lac operon, which we call OptoLAC, to control gene expression from various IPTG-inducible promoters using only blue light. Applying them to metabolic engineering improves mevalonate and isobutanol production by 24% and 27% respectively, compared to IPTG induction, in light-controlled fermentations scalable to at least two-litre bioreactors. Furthermore, OptoLAC circuits enable control of recombinant protein production, reaching yields comparable to IPTG induction but with easier tunability of expression. OptoLAC circuits are potentially useful to confer light control over other cell functions originally designed to be IPTG-inducible.

Optogenetic control of heterologous metabolism in E. coli.

red PhyB/PIF3 E. coli Transgene expression
ACS Synth Biol, 5 Aug 2020 DOI: 10.1021/acssynbio.9b00454 Link to full text
Abstract: Multi-objective optimization of microbial chassis for the production of xenobiotic compounds requires the implementation of metabolic control strategies that permit dynamic distribution of cellular resources between biomass and product formation. We addressed this need in a previous study by engineering the T7 RNA polymerase to be thermally responsive. The modified polymerase is activated only after the temperature of the host cell falls below 18oC, and Escherichia coli cells that employ the protein to transcribe the heterologous lycopene biosynthetic pathway exhibit impressive improvements in productivity. We have expanded our toolbox of metabolic switches in the current study by engineering a version of the T7 RNA polymerase that drives the transition between biomass and product formation upon stimulation with red light. The engineered polymerase is expressed as two distinct polypeptide chains. Each chain comprises one of two photoactive components from Arabidopsis thaliana, phytochrome B (PhyB) and phytochrome-integrating factor 3 (PIF3), as well as the N- or C-terminus domains of both, the vacuolar ATPase subunit (VMA) intein of Saccharomyces cerevisiae and the polymerase. Red light drives photodimerization of PhyB and PIF3, which then brings together the N- and C-terminus domains of the VMA intein. Trans-splicing of the intein follows suit and produces an active form of the polymerase that subsequently transcribes any sequence that is under the control of a T7 promoter. The photodimerization also involves a third element, the cyanobacterial chromophore phycocyanobilin (PCB), which too is expressed heterologously by E. coli. We deployed this version of the T7 RNA polymerase to control the production of lycopene in E. coli and observed tight control of pathway expression. We tested a variety of expression configurations to identify one that imposes the lowest metabolic burden on the strain, and we subsequently optimized key parameters such as the source, moment and duration of photostimulation. We also identified targets for future refinement of the circuit. In summary, our work is a significant advance for the field and greatly expands on previous work by other groups that have used optogenetic circuits to control heterologous metabolism in prokaryotic hosts.

Exploiting natural chemical photosensitivity of anhydrotetracycline and tetracycline for dynamic and setpoint chemo-optogenetic control.

blue Magnets E. coli Transgene expression
Nat Commun, 31 Jul 2020 DOI: 10.1038/s41467-020-17677-5 Link to full text
Abstract: The transcriptional inducer anhydrotetracycline (aTc) and the bacteriostatic antibiotic tetracycline (Tc) are commonly used in all fields of biology for control of transcription or translation. A drawback of these and other small molecule inducers is the difficulty of their removal from cell cultures, limiting their application for dynamic control. Here, we describe a simple method to overcome this limitation, and show that the natural photosensitivity of aTc/Tc can be exploited to turn them into highly predictable optogenetic transcriptional- and growth-regulators. This new optogenetic class uniquely features both dynamic and setpoint control which act via population-memory adjustable through opto-chemical modulation. We demonstrate this method by applying it for dynamic gene expression control and for enhancing the performance of an existing optogenetic system. We then expand the utility of the aTc system by constructing a new chemical bandpass filter that increases its aTc response range. The simplicity of our method enables scientists and biotechnologists to use their existing systems employing aTc/Tc for dynamic optogenetic experiments without genetic modification.

Optogenetic control of gene expression in plants in the presence of ambient white light.

blue red EL222 PhyB/PIF6 A. thaliana leaf protoplasts N. benthamiana in vivo Transgene expression Multichromatic
Nat Methods, 29 Jun 2020 DOI: 10.1038/s41592-020-0868-y Link to full text
Abstract: Optogenetics is the genetic approach for controlling cellular processes with light. It provides spatiotemporal, quantitative and reversible control over biological signaling and metabolic processes, overcoming limitations of chemically inducible systems. However, optogenetics lags in plant research because ambient light required for growth leads to undesired system activation. We solved this issue by developing plant usable light-switch elements (PULSE), an optogenetic tool for reversibly controlling gene expression in plants under ambient light. PULSE combines a blue-light-regulated repressor with a red-light-inducible switch. Gene expression is only activated under red light and remains inactive under white light or in darkness. Supported by a quantitative mathematical model, we characterized PULSE in protoplasts and achieved high induction rates, and we combined it with CRISPR-Cas9-based technologies to target synthetic signaling and developmental pathways. We applied PULSE to control immune responses in plant leaves and generated Arabidopsis transgenic plants. PULSE opens broad experimental avenues in plant research and biotechnology.

PhotoGal4: A Versatile Light-Dependent Switch for Spatiotemporal Control of Gene Expression in Drosophila Explants.

red PhyB/PIF6 Schneider 2 Transgene expression
iScience, 23 Jun 2020 DOI: 10.1016/j.isci.2020.101308 Link to full text
Abstract: We present here PhotoGal4, a phytochrome B-based optogenetic switch for fine-tuned spatiotemporal control of gene expression in Drosophila explants. This switch integrates the light-dependent interaction between phytochrome B and PIF6 from plants with regulatory elements from the yeast Gal4/UAS system. We found that PhotoGal4 efficiently activates and deactivates gene expression upon red- or far-red-light irradiation, respectively. In addition, this optogenetic tool reacts to different illumination conditions, allowing for fine modulation of the light-dependent response. Importantly, by simply focusing a laser beam, PhotoGal4 induces intricate patterns of expression in a customized manner. For instance, we successfully sketched personalized patterns of GFP fluorescence such as emoji-like shapes or letterform logos in Drosophila explants, which illustrates the exquisite precision and versatility of this tool. Hence, we anticipate that PhotoGal4 will expand the powerful Drosophila toolbox and will provide a new avenue to investigate intricate and complex problems in biomedical research.

A combination of LightOn gene expression system and tumor microenvironment-responsive nanoparticle delivery system for targeted breast cancer therapy.

blue VVD 4T1 mouse in vivo Transgene expression Cell death
Acta Pharm Sin B, 27 Apr 2020 DOI: 10.1016/j.apsb.2020.04.010 Link to full text
Abstract: A light-switchable transgene system called LightOn gene expression system could regulate gene expression with a high on/off ratio under blue light, and have great potential for spatiotemporally controllable gene expression. We developed a nanoparticle drug delivery system (NDDS) to achieve tumor microenvironment-responsive and targeted delivery of diphtheria toxin A (DTA) fragment-encoded plasmids to tumor sites. The expression of DTA was induced by exposure to blue light. Nanoparticles composed of polyethylenimine and vitamin E succinate linked by a disulfide bond, and PEGylated hyaluronic acid modified with RGD peptide, accumulated in tumor tissues and were actively internalized into 4T1 cells via dual targeting to CD44 and αvβ3 receptors. The LightOn gene expression system was able to control target protein expression through regulation of the intensity or duration of blue light exposure. In vitro studies showed that light-induced DTA expression reduced 4T1 cell viability and induced apoptosis. Furthermore, the LightOn gene expression system enabled spatiotemporal control of the expression of DTA in a mouse 4T1 tumor xenograft model, which resulted in excellent antitumor effects, reduced tumor angiogenesis, and no systemic toxicity. The combination of the LightOn gene expression system and NDDS may be an effective strategy for treatment of breast cancer.

Optical induction of autophagy via Transcription factor EB (TFEB) reduces pathological tau in neurons.

blue EL222 HEK293T human IPSCs Neuro-2a Transgene expression
PLoS ONE, 24 Mar 2020 DOI: 10.1371/journal.pone.0230026 Link to full text
Abstract: Pathological accumulation of microtubule associated protein tau in neurons is a major neuropathological hallmark of Alzheimer's disease (AD) and related tauopathies. Several attempts have been made to promote clearance of pathological tau (p-Tau) from neurons. Transcription factor EB (TFEB) has shown to clear p-Tau from neurons via autophagy. However, sustained TFEB activation and autophagy can create burden on cellular bioenergetics and can be deleterious. Here, we modified previously described two-plasmid systems of Light Activated Protein (LAP) from bacterial transcription factor-EL222 and Light Responsive Element (LRE) to encode TFEB. Upon blue-light (465 nm) illumination, the conformation changes in LAP induced LRE-driven expression of TFEB, its nuclear entry, TFEB-mediated expression of autophagy-lysosomal genes and clearance of p-Tau from neuronal cells and AD patient-derived human iPSC-neurons. Turning the blue-light off reversed the expression of TFEB-target genes and attenuated p-Tau clearance. Together, these results suggest that optically regulated TFEB expression unlocks the potential of opto-therapeutics to treat AD and other dementias.
Submit a new publication to our database