Light-Controlled Promiscuous Cell Adhesion through the Plasma Membrane-Binding Protein BcLOV4.
Abstract:
Dynamic regulation of cell-cell adhesion is fundamental to numerous biological processes and is the key to engineering multicellular structures. Optogenetic tools offer precise spatiotemporal control over cell-cell adhesions, but current methods often require the genetic modification of each participating cell type. To address this limitation, we engineered a single-component synthetic cell adhesion molecule based on the blue-light-responsive, plasma membrane-binding protein BcLOV4. We tagged BcLOV4 with a transmembrane domain to display it on the outer plasma membrane (BcLOV4-PM). Under blue light but not in the dark, BcLOV4-PM cells formed both homotypic adhesions with other BcLOV4-PM cells and heterotypic adhesions with a range of unmodified wild-type cells. While these adhesions were not reversed in the dark, they could be efficiently disrupted by increasing the temperature to 37 °C, leveraging BcLOV4's thermosensitivity. Using BcLOV4-PM-based adhesions, we demonstrated light-controlled compaction of spheroids in both monocultures and cocultures with wild-type cells. Altogether, BcLOV4-PM enables promiscuous, modular, light-dependent control of cell-cell adhesions without requiring genetic modification of all cell types involved, offering promising applications in tissue engineering and the study of multicellular process.