Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Qr: author:"Ravikanth Appalabhotla"
Showing 1 - 1 of 1 results
1.

Optogenetic control of PLC-γ1 activity polarizes cell motility.

blue iLID isolated MEFs Signaling cascade control Control of cytoskeleton / cell motility / cell shape
bioRxiv, 11 Oct 2025 DOI: 10.1101/2025.10.09.681531 Link to full text
Abstract: Phospholipase C-γ1 (PLC-γ1) signaling is required for mesenchymal chemotaxis, but is it sufficient to bias motility? PLC-γ1 enzyme activity is basally autoinhibited, and light-controlled membrane recruitment of wild-type (WT) PLC-γ1 (OptoPLC-γ1) in Plcg1-null fibroblasts does not trigger lipid hydrolysis, complicating efforts to isolate its contribution. Utilizing cancer-associated mutations to investigate the regulatory logic of PLC-γ1, we demonstrate that the canonical hallmark of enzyme activity, phosphorylated Tyr783 (pTyr783), is not a proxy for activity level, but is rather a marker of dysregulated autoinhibition. Accordingly, OptoPLC-γ1 with a deregulating mutation (P867R, S345F, or D1165H) exhibits elevated phosphorylation, and membrane localization of such is sufficient to activate substrate hydrolysis and concomitant motility responses. In particular, local recruitment of OptoPLC-γ1 S345F polarizes cell motility on demand. This response is spatially dose-sensitive and only partially reduced by blocking canonical PLC-γ1 signaling yet is lipase-dependent. Our findings reframe the interpretation of PLC-γ1 regulation and demonstrate that local activation of PLC-γ1 is sufficient to direct cell motility.
Submit a new publication to our database