Qr: author:"Shiaki A Minami"
Showing 1 - 2 of 2 results
1.
A simplified two-plasmid system for orthogonal control of mammalian gene expression using light-activated CRISPR effector.
Abstract:
Optogenetic systems use light-responsive proteins to control gene expression, ion channels, protein localization, and signaling with the "flip of a switch". One such tool is the light activated CRISPR effector (LACE) system. Its ability to regulate gene expression in a tunable, reversible, and spatially resolved manner makes it attractive for many applications. However, LACE relies on delivery of four separate components on individual plasmids, which can limit its use. Here, we optimize LACE to reduce the number of plasmids needed to deliver all four components.
2.
Transient light-activated gene expression in Chinese hamster ovary cells.
Abstract:
Chinese hamster ovary (CHO) cells are widely used for industrial production of biopharmaceuticals. Many genetic, chemical, and environmental approaches have been developed to modulate cellular pathways to improve titers. However, these methods are often irreversible or have off-target effects. Development of techniques which are precise, tunable, and reversible will facilitate temporal regulation of target pathways to maximize titers. In this study, we investigate the use of optogenetics in CHO cells. The light-activated CRISPR-dCas9 effector (LACE) system was first transiently transfected to express eGFP in a light-inducible manner. Then, a stable system was tested using lentiviral transduction.