Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results
1.

STIM1 and Endoplasmic Reticulum-Plasma Membrane Contact Sites Oscillate Independently of Calcium-Induced Calcium Release.

blue CRY2/CIB1 RBL-2H3 Organelle manipulation
bioRxiv, 17 Mar 2025 DOI: 10.1101/2025.03.16.643575 Link to full text
Abstract: Calcium (Ca2+) release from intracellular stores, Ca2+ entry across the plasma membrane, and their coordination via store-operated Ca2+ entry (SOCE) are critical for receptor-activated Ca2+ oscillations. However, the precise mechanism of Ca2+ oscillations and whether their control loop resides at the plasma membrane or intracellularly remain unresolved. By examining the dynamics of stromal interaction molecule 1 (STIM1), an endoplasmic reticulum (ER)-localized Ca2+ sensor that activates the Orai1 channel on the plasma membrane for SOCE and in mast cells, we found that a significant proportion of cells exhibited STIM1 oscillations with the same periodicity as Ca2+ oscillations. These cortical oscillations, occurring in the cell's cortical region and shared with ER-plasma membrane (ER-PM) contact site proteins, were only detectable using total internal reflection fluorescence microscopy (TIRFM). Notably, STIM1 oscillations could occur independently of Ca2+ oscillations. Simultaneous imaging of cytoplasmic Ca2+ and ER Ca2+ with SEPIA-ER revealed that receptor activation does not deplete ER Ca2+, whereas receptor activation without extracellular Ca2+ influx induces cyclic ER Ca2+ depletion. However, under such nonphysiological conditions, cyclic ER Ca2+ oscillations lead to sustained STIM1 recruitment, indicating that oscillatory Ca2+ release is neither necessary nor sufficient for STIM1 oscillations. Using optogenetic tools to manipulate ER-PM contact site dynamics, we found that persistent ER-PM contact sites reduced the amplitude of Ca2+ oscillations without alteration of oscillation frequency. Together, these findings suggest an active cortical mechanism governs the rapid dissociation of ER-PM contact sites, thereby controlling the amplitude of oscillatory Ca2+ dynamics during receptor-induced Ca2+ oscillations.
2.

B12-induced reassembly of split photoreceptor protein enables photoresponsive hydrogels with tunable mechanics.

green TtCBD in vitro Extracellular optogenetics
Sci Adv, 1 Apr 2022 DOI: 10.1126/sciadv.abm5482 Link to full text
Abstract: Although the tools based on split proteins have found broad applications, ranging from controlled biological signaling to advanced molecular architectures, many of them suffer from drawbacks such as background reassembly, low thermodynamic stability, and static structural features. Here, we present a chemically inducible protein assembly method enabled by the dissection of the carboxyl-terminal domain of a B12-dependent photoreceptor, CarHC. The resulting segments reassemble efficiently upon addition of cobalamin (AdoB12, MeB12, or CNB12). Photolysis of the cofactors such as AdoB12 and MeB12 further leads to stable protein adducts harboring a bis-His-ligated B12. Split CarHC enables the creation of a series of protein hydrogels, of which the mechanics can be either photostrengthened or photoweakened, depending on the type of B12. These materials are also well suited for three dimensional cell culturing. Together, this new protein chemistry, featuring negligible background autoassembly, stable conjugation, and phototunability, has opened up opportunities for designing smart materials.
Submit a new publication to our database