Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 6 of 6 results

Blue-Light Receptors for Optogenetics.

blue green red UV BLUF domains Cryptochromes Fluorescent proteins LOV domains Opsins Phytochromes UV receptors Review
Chem Rev, 9 Jul 2018 DOI: 10.1021/acs.chemrev.8b00163 Link to full text
Abstract: Sensory photoreceptors underpin light-dependent adaptations of organismal physiology, development, and behavior in nature. Adapted for optogenetics, sensory photoreceptors become genetically encoded actuators and reporters to enable the noninvasive, spatiotemporally accurate and reversible control by light of cellular processes. Rooted in a mechanistic understanding of natural photoreceptors, artificial photoreceptors with customized light-gated function have been engineered that greatly expand the scope of optogenetics beyond the original application of light-controlled ion flow. As we survey presently, UV/blue-light-sensitive photoreceptors have particularly allowed optogenetics to transcend its initial neuroscience applications by unlocking numerous additional cellular processes and parameters for optogenetic intervention, including gene expression, DNA recombination, subcellular localization, cytoskeleton dynamics, intracellular protein stability, signal transduction cascades, apoptosis, and enzyme activity. The engineering of novel photoreceptors benefits from powerful and reusable design strategies, most importantly light-dependent protein association and (un)folding reactions. Additionally, modified versions of these same sensory photoreceptors serve as fluorescent proteins and generators of singlet oxygen, thereby further enriching the optogenetic toolkit. The available and upcoming UV/blue-light-sensitive actuators and reporters enable the detailed and quantitative interrogation of cellular signal networks and processes in increasingly more precise and illuminating manners.

A cyanobacterial light activated adenylyl cyclase partially restores development of a Dictyostelium discoideum, adenylyl cyclase a null mutant.

blue mPAC D. discoideum Developmental processes Immediate control of second messengers
J Biotechnol, 14 Aug 2014 DOI: 10.1016/j.jbiotec.2014.08.008 Link to full text
Abstract: A light-regulated adenylyl cyclase, mPAC, was previously identified from the cyanobacterium Microcoleus chthonoplastes PCC7420. MPAC consists of a flavin-based blue light-sensing LOV domain and a catalytic domain. In this work, we expressed mPAC in an adenylate cyclase A null mutant (aca-) of the eukaryote Dictyostelium discoideum and tested to what extent light activation of mPAC could restore the cAMP-dependent developmental programme of this organism. Amoebas of Dictyostelium, a well-established model organism, generate and respond to cAMP pulses, which cause them to aggregate and construct fruiting bodies. mPAC was expressed under control of a constitutive actin-15 promoter in D. discoideum and displayed low basal adenylyl cyclase activity in darkness that was about five-fold stimulated by blue light. mPAC expression in aca- cells marginally restored aggregation and fruiting body formation in darkness. However, more and larger fruiting bodies were formed when mPAC expressing cells were incubated in light. Extending former applications of light-regulated AC, these results demonstrate that mPAC can be used to manipulate multicellular development in eukaryotes in a light dependent manner.

A LOV-domain-mediated blue-light-activated adenylate (adenylyl) cyclase from the cyanobacterium Microcoleus chthonoplastes PCC 7420.

blue mPAC in vitro Xenopus oocytes Immediate control of second messengers
Biochem J, 1 Nov 2013 DOI: 10.1042/bj20130637 Link to full text
Abstract: Genome screening of the cyanobacterium Microcoleus chthonoplastes PCC 7420 identified a gene encoding a protein (483 amino acids, 54.2 kDa in size) characteristic of a BL (blue light)-regulated adenylate (adenylyl) cyclase function. The photoreceptive part showed signatures of a LOV (light, oxygen, voltage) domain. The gene product, mPAC (Microcoleus photoactivated adenylate cyclase), exhibited the LOV-specific three-peaked absorption band (λmax=450 nm) and underwent conversion into the photoadduct form (λmax=390 nm) upon BL-irradiation. The lifetime for thermal recovery into the parent state was determined as 16 s at 20°C (25 s at 11°C). The adenylate cyclase function showed a constitutive activity (in the dark) that was in-vitro-amplified by a factor of 30 under BL-irradiation. Turnover of the purified protein at saturating light and pH 8 is estimated to 1 cAMP/mPAC per s at 25°C (2 cAMP/mPAC per s at 35°C). The lifetime of light-activated cAMP production after a BL flash was ~14 s at 20°C. The temperature optimum was determined to 35°C and the pH optimum to 8.0. The value for half-maximal activating light intensity is 6 W/m2 (at 35°C). A comparison of mPAC and the BLUF (BL using FAD) protein bPAC (Beggiatoa PAC), as purified proteins and expressed in Xenopus laevis oocytes, yielded higher constitutive activity for mPAC in the dark, but also when illuminated with BL.

The evolution of flavin-binding photoreceptors: an ancient chromophore serving trendy blue-light sensors.

blue BLUF domains LOV domains Review Background
Annu Rev Plant Biol, 15 Nov 2011 DOI: 10.1146/annurev-arplant-042811-105538 Link to full text
Abstract: Photoreceptor flavoproteins of the LOV, BLUF, and cryptochrome families are ubiquitous among the three domains of life and are configured as UVA/blue-light systems not only in plants-their original arena-but also in prokaryotes and microscopic algae. Here, we review these proteins' structure and function, their biological roles, and their evolution and impact in the living world, and underline their growing application in biotechnologies. We present novel developments such as the interplay of light and redox stimuli, emerging enzymatic and biological functions, lessons on evolution from picoalgae, metagenomics analysis, and optogenetics applications.

Old chromophores, new photoactivation paradigms, trendy applications: flavins in blue light-sensing photoreceptors.

blue BLUF domains LOV domains Review Background
Photochem Photobiol, 23 Mar 2011 DOI: 10.1111/j.1751-1097.2011.00913.x Link to full text
Abstract: The knowledge on the mechanisms by which blue light (BL) is sensed by diverse and numerous organisms, and of the physiological responses elicited by the BL photoreceptors, has grown remarkably during the last two decades. The basis for this "blue revival" was set by the identification and molecular characterization of long sought plant BL sensors, employing flavins as chromophores, chiefly cryptochromes and phototropins. The latter photosensors are the foundation members of the so-called light, oxygen, voltage (LOV)-protein family, largely spread among archaea, bacteria, fungi and plants. The accumulation of sequenced microbial genomes during the last years has added the BLUF (Blue Light sensing Using FAD) family to the BL photoreceptors and yielded the opportunity for intense "genome mining," which has presented to us the intriguing wealth of BL sensing in prokaryotes. In this contribution we provide an update of flavin-based BL sensors of the LOV and BLUF type, from prokaryotic microorganisms, with special emphasis to their light-activation pathways and molecular signal-transduction mechanisms. Rather than being a fully comprehensive review, this research collects the most recent discoveries and aims to unveil and compare signaling pathways and mechanisms of BL sensors.

Light modulation of cellular cAMP by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium Beggiatoa.

blue bPAC (BlaC) euPAC D. melanogaster in vivo E. coli in vitro rat hippocampal neurons Xenopus oocytes Immediate control of second messengers Neuronal activity control
J Biol Chem, 28 Oct 2010 DOI: 10.1074/jbc.m110.185496 Link to full text
Abstract: The recent success of channelrhodopsin in optogenetics has also caused increasing interest in enzymes that are directly activated by light. We have identified in the genome of the bacterium Beggiatoa a DNA sequence encoding an adenylyl cyclase directly linked to a BLUF (blue light receptor using FAD) type light sensor domain. In Escherichia coli and Xenopus oocytes, this photoactivated adenylyl cyclase (bPAC) showed cyclase activity that is low in darkness but increased 300-fold in the light. This enzymatic activity decays thermally within 20 s in parallel with the red-shifted BLUF photointermediate. bPAC is well expressed in pyramidal neurons and, in combination with cyclic nucleotide gated channels, causes efficient light-induced depolarization. In the Drosophila central nervous system, bPAC mediates light-dependent cAMP increase and behavioral changes in freely moving animals. bPAC seems a perfect optogenetic tool for light modulation of cAMP in neuronal cells and tissues and for studying cAMP-dependent processes in live animals.
Submit a new publication to our database