Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 25 of 25 results

Photobiologically Directed Assembly of Gold Nanoparticles.

blue PtAU1-LOV VVD in vitro
Adv Biol, 30 Dec 2020 DOI: 10.1002/adbi.202000179 Link to full text
Abstract: In nature, photoreceptor proteins undergo molecular responses to light, that exhibit supreme fidelity in time and space and generally occur under mild reaction conditions. To unlock these traits for material science, the light‐induced homodimerization of light‐oxygen‐voltage (LOV) photoreceptors is leveraged to control the assembly of gold nanoparticles. Conjugated to genetically encodable LOV proteins, the nanoparticles are monodispersed in darkness but rapidly assemble into large aggregates upon blue‐light exposure. The work establishes a new modality for reaction control in macromolecular chemistry and thus augurs enhanced precision in space and time in diverse applications of gold nanoparticles.

Optoribogenetic control of regulatory RNA molecules.

blue PAL HEK293 Cell cycle control Transgene expression
Nat Commun, 24 Sep 2020 DOI: 10.1038/s41467-020-18673-5 Link to full text
Abstract: Short regulatory RNA molecules underpin gene expression and govern cellular state and physiology. To establish an alternative layer of control over these processes, we generated chimeric regulatory RNAs that interact reversibly and light-dependently with the light-oxygen-voltage photoreceptor PAL. By harnessing this interaction, the function of micro RNAs (miRs) and short hairpin (sh) RNAs in mammalian cells can be regulated in a spatiotemporally precise manner. The underlying strategy is generic and can be adapted to near-arbitrary target sequences. Owing to full genetic encodability, it establishes optoribogenetic control of cell state and physiology. The method stands to facilitate the non-invasive, reversible and spatiotemporally resolved study of regulatory RNAs and protein function in cellular and organismal environments.

Illuminating a Phytochrome Paradigm- a Light-Activated Phosphatase in Two-Component Signaling Uncovered.

red Phytochromes Background
bioRxiv, 27 Jun 2020 DOI: 10.1101/2020.06.26.173310 Link to full text
Abstract: Bacterial phytochrome photoreceptors usually belong to two-component signaling systems which transmit environmental stimuli to a response regulator through a histidine kinase domain. Phytochromes switch between red light-absorbing and far-red light-absorbing states. Despite exhibiting extensive structural responses during this transition, the model bacteriophytochrome from Deinococcus radiodurans (DrBphP) lacks detectable kinase activity. Here, we resolve this long-standing conundrum by comparatively analyzing the interactions and output activities of DrBphP and a bacteriophytochrome from Agrobacterium fabrum (AgP1). Whereas AgP1 acts as a conventional histidine kinase, we identify DrBphP as a light-sensitive phosphatase. While AgP1 binds its cognate response regulator only transiently, DrBphP does so strongly, which is rationalized at the structural level. Our data pinpoint two key residues affecting the balance between kinase and phosphatase activities, which immediately bears on photoreception and two-component signaling. The opposing output activities in two highly similar bacteriophytochromes inform the use of light-controllable histidine kinases and phosphatases for optogenetics.

Nanobody-directed targeting of optogenetic tools to study signaling in the primary cilium.

blue red bPAC (BlaC) LAPD HEK293 mIMCD-3 Signaling cascade control Control of cytoskeleton / cell motility / cell shape Immediate control of second messengers
Elife, 24 Jun 2020 DOI: 10.7554/elife.57907 Link to full text
Abstract: Compartmentalization of cellular signaling forms the molecular basis of cellular behavior. The primary cilium constitutes a subcellular compartment that orchestrates signal transduction independent from the cell body. Ciliary dysfunction causes severe diseases, termed ciliopathies. Analyzing ciliary signaling has been challenging due to the lack of tools investigate ciliary signaling. Here, we describe a nanobody-based targeting approach for optogenetic tools in mammalian cells and in vivo in zebrafish to specifically analyze ciliary signaling and function. Thereby, we overcome the loss of protein function observed after fusion to ciliary targeting sequences. We functionally localized modifiers of cAMP signaling, the photo-activated adenylate cyclase bPAC and the light-activated phosphodiesterase LAPD, and the cAMP biosensor mlCNBD-FRET to the cilium. Using this approach, we studied the contribution of spatial cAMP signaling in controlling cilia length. Combining optogenetics with nanobody-based targeting will pave the way to the molecular understanding of ciliary function in health and disease.

The Association Kinetics Encode the Light Dependence of Arabidopsis Phytochrome B Interactions.

red Phytochromes Background
J Mol Biol, 10 Jun 2020 DOI: 10.1016/j.jmb.2020.06.001 Link to full text
Abstract: Plant phytochromes enable vital adaptations to red and far-red light. At the molecular level, these responses are mediated by light-regulated interactions between phytochromes and partner proteins, foremost the phytochrome-interacting factors (PIF). Although known for decades, quantitative analyses of these interactions have long been sparse. To address this deficit, we here studied by an integrated fluorescence-spectroscopic approach the equilibrium and kinetics of Arabidopsis thaliana phytochrome B (AtPhyB) binding to a tetramerized PIF6 variant. Several readouts consistently showed the stringently light-regulated interaction to be little affected by PIF tetramerization. Analysis of the binding kinetics allowed the determination of bimolecular association and unimolecular dissociation rate constants as a function of light. Unexpectedly, the stronger affinity of AtPhyB under red light relative to far-red light is entirely due to accelerated association rather than decelerated dissociation. The association reaction under red light is highly efficient and only threefold slower than the diffusion limit. The present findings pertain equally to the analysis of signal transduction in plants and to the biotechnological application of phytochromes.

Deconstructing and repurposing the light-regulated interplay between Arabidopsis phytochromes and interacting factors.

red PhyB/PIF3 PhyB/PIF6 CHO-K1 in vitro NIH/3T3
Commun Biol, 2 Dec 2019 DOI: 10.1038/s42003-019-0687-9 Link to full text
Abstract: Phytochrome photoreceptors mediate adaptive responses of plants to red and far-red light. These responses generally entail light-regulated association between phytochromes and other proteins, among them the phytochrome-interacting factors (PIF). The interaction with Arabidopsis thaliana phytochrome B (AtPhyB) localizes to the bipartite APB motif of the A. thaliana PIFs (AtPIF). To address a dearth of quantitative interaction data, we construct and analyze numerous AtPIF3/6 variants. Red-light-activated binding is predominantly mediated by the APB N-terminus, whereas the C-terminus modulates binding and underlies the differential affinity of AtPIF3 and AtPIF6. We identify AtPIF variants of reduced size, monomeric or homodimeric state, and with AtPhyB affinities between 10 and 700 nM. Optogenetically deployed in mammalian cells, the AtPIF variants drive light-regulated gene expression and membrane recruitment, in certain cases reducing basal activity and enhancing regulatory response. Moreover, our results provide hitherto unavailable quantitative insight into the AtPhyB:AtPIF interaction underpinning vital light-dependent responses in plants.

A blue light receptor that mediates RNA binding and translational regulation.

blue PAL E. coli HeLa in vitro
Nat Chem Biol, 26 Aug 2019 DOI: 10.1038/s41589-019-0346-y Link to full text
Abstract: Sensory photoreceptor proteins underpin light-dependent adaptations in nature and enable the optogenetic control of organismal behavior and physiology. We identified the bacterial light-oxygen-voltage (LOV) photoreceptor PAL that sequence-specifically binds short RNA stem loops with around 20 nM affinity in blue light and weaker than 1 µM in darkness. A crystal structure rationalizes the unusual receptor architecture of PAL with C-terminal LOV photosensor and N-terminal effector units. The light-activated PAL-RNA interaction can be harnessed to regulate gene expression at the RNA level as a function of light in both bacteria and mammalian cells. The present results elucidate a new signal-transduction paradigm in LOV receptors and conjoin RNA biology with optogenetic regulation, thereby paving the way toward hitherto inaccessible optoribogenetic modalities.

Signal transduction in photoreceptor histidine kinases.

blue red LOV domains Phytochromes Review
Protein Sci, 20 Aug 2019 DOI: 10.1002/pro.3705 Link to full text
Abstract: Two-component systems (TCS) constitute the predominant means by which prokaryotes read out and adapt to their environment. Canonical TCSs comprise a sensor histidine kinase (SHK), usually a transmembrane receptor, and a response regulator (RR). In signal-dependent manner, the SHK autophosphorylates and in turn transfers the phosphoryl group to the RR which then elicits downstream responses, often in form of altered gene expression. SHKs also catalyze the hydrolysis of the phospho-RR, hence, tightly adjusting the overall degree of RR phosphorylation. Photoreceptor histidine kinases are a subset of mostly soluble, cytosolic SHKs that sense light in the near-ultraviolet to near-infrared spectral range. Owing to their experimental tractability, photoreceptor histidine kinases serve as paradigms and provide unusually detailed molecular insight into signal detection, decoding, and regulation of SHK activity. The synthesis of recent results on receptors with light-oxygen-voltage, bacteriophytochrome and microbial rhodopsin sensor units identifies recurring, joint signaling strategies. Light signals are initially absorbed by the sensor module and converted into subtle rearrangements of α helices, mostly through pivoting and rotation. These conformational transitions propagate through parallel coiled-coil linkers to the effector unit as changes in left-handed superhelical winding. Within the effector, subtle conformations are triggered that modulate the solvent accessibility of residues engaged in the kinase and phosphatase activities. Taken together, a consistent view of the entire trajectory from signal detection to regulation of output emerges. The underlying allosteric mechanisms could widely apply to TCS signaling in general.

Revisiting and Redesigning Light-Activated Cyclic-Mononucleotide Phosphodiesterases.

red DrBphP LAPD HEK293 in vitro Immediate control of second messengers
J Mol Biol, 10 Jul 2019 DOI: 10.1016/j.jmb.2019.07.011 Link to full text
Abstract: As diffusible second messengers, cyclic nucleoside monophosphates (cNMPs) relay and amplify molecular signals in myriad cellular pathways. The triggering of downstream physiological responses often requires defined cNMP gradients in time and space, generated through the concerted action of nucleotidyl cyclases and phosphodiesterases (PDEs). In an approach denoted optogenetics, sensory photoreceptors serve as genetically encoded, light-responsive actuators to enable the noninvasive, reversible, and spatiotemporally precise control of manifold cellular processes, including cNMP metabolism. Although nature provides efficient photoactivated nucleotidyl cyclases, light-responsive PDEs are scarce. Through modular recombination of a bacteriophytochrome photosensor and the effector of human PDE2A, we previously generated the light-activated, cNMP-specific PDE LAPD. By pursuing parallel design strategies, we here report a suite of derivative PDEs with enhanced amplitude and reversibility of photoactivation. Opposite to LAPD, far-red light completely reverts prior activation by red light in several PDEs. These improved PDEs thus complement photoactivated nucleotidyl cyclases and extend the sensitivity of optogenetics to red and far-red light. More generally, our study informs future efforts directed at designing bacteriophytochrome photoreceptors.

Cyclic Nucleotide-Specific Optogenetics Highlights Compartmentalization of the Sperm Flagellum into cAMP Microdomains.

blue red bPAC (BlaC) LAPD HEK293 mouse sperm cells Signaling cascade control Control of cytoskeleton / cell motility / cell shape Immediate control of second messengers
Cells, 27 Jun 2019 DOI: 10.3390/cells8070648 Link to full text
Abstract: Inside the female genital tract, mammalian sperm undergo a maturation process called capacitation, which primes the sperm to navigate across the oviduct and fertilize the egg. Sperm capacitation and motility are controlled by 3',5'-cyclic adenosine monophosphate (cAMP). Here, we show that optogenetics, the control of cellular signaling by genetically encoded light-activated proteins, allows to manipulate cAMP dynamics in sperm flagella and, thereby, sperm capacitation and motility by light. To this end, we used sperm that express the light-activated phosphodiesterase LAPD or the photo-activated adenylate cyclase bPAC. The control of cAMP by LAPD or bPAC combined with pharmacological interventions provides spatiotemporal precision and allows to probe the physiological function of cAMP compartmentalization in mammalian sperm.

Pulsatile illumination for photobiology and optogenetics.

blue red DdPAC YtvA E. coli Immediate control of second messengers
Meth Enzymol, 26 Apr 2019 DOI: 10.1016/bs.mie.2019.04.005 Link to full text
Abstract: Living organisms exhibit a wide range of intrinsic adaptive responses to incident light. Likewise, in optogenetics, biological systems are tailored to initiate predetermined cellular processes upon light exposure. As genetically encoded, light-gated actuators, sensory photoreceptors are at the heart of these responses in both the natural and engineered scenarios. Upon light absorption, photoreceptors enter a series of generally rapid photochemical reactions leading to population of the light-adapted signaling state of the receptor. Notably, this state persists for a while before thermally reverting to the original dark-adapted resting state. As a corollary, the inactivation of photosensitive biological circuits upon light withdrawal can exhibit substantial inertia. Intermittent illumination of suitable pulse frequency can hence maintain the photoreceptor in its light-adapted state while greatly reducing overall light dose, thereby mitigating adverse side effects. Moreover, several photoreceptor systems may be actuated sequentially with a single light color if they sufficiently differ in their inactivation kinetics. Here, we detail the construction of programmable illumination devices for the rapid and parallelized testing of biological responses to diverse lighting regimes. As the technology is based on open electronics and readily available, inexpensive components, it can be adopted by most laboratories at moderate expenditure. As we exemplify for two use cases, the programmable devices enable the facile interrogation of diverse illumination paradigms and their application in optogenetics and photobiology.

Characterization and engineering of photoactivated adenylyl cyclases.

blue red BLUF domains Phytochromes Background
Biol Chem, 9 Jan 2019 DOI: 10.1515/hsz-2018-0375 Link to full text
Abstract: Cyclic nucleoside monophosphates (cNMP) serve as universal second messengers in signal transduction across prokaryotes and eukaryotes. As signaling often relies on transiently formed microdomains of elevated second messenger concentration, means to precisely perturb the spatiotemporal dynamics of cNMPs are uniquely poised for the interrogation of the underlying physiological processes. Optogenetics appears particularly suited as it affords light-dependent, accurate control in time and space of diverse cellular processes. Several sensory photoreceptors function as photoactivated adenylyl cyclases (PAC) and hence serve as light-regulated actuators for the control of intracellular levels of 3', 5'-cyclic adenosine monophosphate. To characterize PACs and to refine their properties, we devised a test bed for the facile analysis of these photoreceptors. Cyclase activity is monitored in bacterial cells via expression of a fluorescent reporter, and programmable illumination allows the rapid exploration of multiple lighting regimes. We thus probed two PACs responding to blue and red light, respectively, and observed significant dark activity for both. We next engineered derivatives of the red-light-sensitive PAC with altered responses to light, with one variant, denoted DdPAC, showing enhanced response to light. These PAC variants stand to enrich the optogenetic toolkit and thus facilitate the detailed analysis of cNMP metabolism and signaling.

Blue-Light Receptors for Optogenetics.

blue green red UV BLUF domains Cryptochromes Fluorescent proteins LOV domains Opsins Phytochromes UV receptors Review
Chem Rev, 9 Jul 2018 DOI: 10.1021/acs.chemrev.8b00163 Link to full text
Abstract: Sensory photoreceptors underpin light-dependent adaptations of organismal physiology, development, and behavior in nature. Adapted for optogenetics, sensory photoreceptors become genetically encoded actuators and reporters to enable the noninvasive, spatiotemporally accurate and reversible control by light of cellular processes. Rooted in a mechanistic understanding of natural photoreceptors, artificial photoreceptors with customized light-gated function have been engineered that greatly expand the scope of optogenetics beyond the original application of light-controlled ion flow. As we survey presently, UV/blue-light-sensitive photoreceptors have particularly allowed optogenetics to transcend its initial neuroscience applications by unlocking numerous additional cellular processes and parameters for optogenetic intervention, including gene expression, DNA recombination, subcellular localization, cytoskeleton dynamics, intracellular protein stability, signal transduction cascades, apoptosis, and enzyme activity. The engineering of novel photoreceptors benefits from powerful and reusable design strategies, most importantly light-dependent protein association and (un)folding reactions. Additionally, modified versions of these same sensory photoreceptors serve as fluorescent proteins and generators of singlet oxygen, thereby further enriching the optogenetic toolkit. The available and upcoming UV/blue-light-sensitive actuators and reporters enable the detailed and quantitative interrogation of cellular signal networks and processes in increasingly more precise and illuminating manners.

Optogenetic Control by Pulsed Illumination.

blue YtvA E. coli
Chembiochem, 14 Feb 2018 DOI: 10.1002/cbic.201800030 Link to full text
Abstract: Sensory photoreceptors evoke numerous adaptive responses in Nature and serve as light-gated actuators in optogenetics to enable the spatiotemporally precise, reversible and noninvasive control of cellular events. The output of optogenetic circuits can often be dialed in by varying illumination quality, quantity and duration. Here, we devise a programmable matrix of light-emitting diodes to efficiently probe the response of optogenetic systems to intermittently applied light of varying intensity and pulse frequency. Circuits for light-regulated gene expression markedly differed in their responses to pulsed illumination of a single color which sufficed for sequentially triggering them. In addition to quantity and quality, the pulse frequency of intermittent light hence provides a further input variable for output control in optogenetics and photobiology. Pulsed illumination schemes allow the reduction of overall light dose and facilitate the multiplexing of several light-dependent actuators and reporters.

Time-Resolved X-Ray Solution Scattering Reveals the Structural Photoactivation of a Light-Oxygen-Voltage Photoreceptor.

blue LOV domains Background
Structure, 8 May 2017 DOI: 10.1016/j.str.2017.04.006 Link to full text
Abstract: Light-oxygen-voltage (LOV) receptors are sensory proteins controlling a wide range of organismal adaptations in multiple kingdoms of life. Because of their modular nature, LOV domains are also attractive for use as optogenetic actuators. A flavin chromophore absorbs blue light, forms a bond with a proximal cysteine residue, and induces changes in the surroundings. There is a gap of knowledge on how this initial signal is relayed further through the sensor to the effector module. To characterize these conformational changes, we apply time-resolved X-ray scattering to the homodimeric LOV domain from Bacillus subtilis YtvA. We observe a global structural change in the LOV dimer synchronous with the formation of the chromophore photoproduct state. Using molecular modeling, this change is identified as splaying apart and relative rotation of the two monomers, which leads to an increased separation at the anchoring site of the effector modules.

Engineering of temperature- and light-switchable Cas9 variants.

blue RsLOV E. coli in vitro
Nucleic Acids Res, 15 Oct 2016 DOI: 10.1093/nar/gkw930 Link to full text
Abstract: Sensory photoreceptors have enabled non-invasive and spatiotemporal control of numerous biological processes. Photoreceptor engineering has expanded the repertoire beyond natural receptors, but to date no generally applicable strategy exists towards constructing light-regulated protein actuators of arbitrary function. We hence explored whether the homodimeric Rhodobacter sphaeroides light-oxygen-voltage (LOV) domain (RsLOV) that dissociates upon blue-light exposure can confer light sensitivity onto effector proteins, via a mechanism of light-induced functional site release. We chose the RNA-guided programmable DNA endonuclease Cas9 as proof-of-principle effector, and constructed a comprehensive library of RsLOV inserted throughout the Cas9 protein. Screening with a high-throughput assay based on transcriptional repression in Escherichia coli yielded paRC9, a moderately light-activatable variant. As domain insertion can lead to protein destabilization, we also screened the library for temperature-sensitive variants and isolated tsRC9, a variant with robust activity at 29°C but negligible activity at 37°C. Biochemical assays confirmed temperature-dependent DNA cleavage and binding for tsRC9, but indicated that the light sensitivity of paRC9 is specific to the cellular setting. Using tsRC9, the first temperature-sensitive Cas9 variant, we demonstrate temperature-dependent transcriptional control over ectopic and endogenous genetic loci. Taken together, RsLOV can confer light sensitivity onto an unrelated effector; unexpectedly, the same LOV domain can also impart strong temperature sensitivity.

Library-Aided Probing of Linker Determinants in Hybrid Photoreceptors.

blue LOV domains Background
ACS Synth Biol, 21 Mar 2016 DOI: 10.1021/acssynbio.6b00028 Link to full text
Abstract: Signaling proteins comprise interaction and effector modules connected by linkers. Throughout evolution, these recurring modules have multiply been recombined to produce the present-day plethora of signaling proteins. Likewise, modular recombination lends itself to the engineering of hybrid signal receptors, whose functionality hinges on linker topology, sequence, and length. Often, numerous linkers must be assessed to obtain functional receptors. To expedite linker optimization, we devised the PATCHY strategy (primer-aided truncation for the creation of hybrid proteins) for the facile construction of hybrid gene libraries with defined linker distributions. Empowered by PATCHY, we engineered photoreceptors whose signal response was governed by linker length: whereas blue-light-repressed variants possessed linkers of 7n or 7n+5 residues, variants with 7n+1 residues were blue-light-activated. Related natural receptors predominantly displayed linker lengths of 7n and 7n+5 residues but rarely of 7n+1 residues. PATCHY efficiently explores linker sequence space to yield functional hybrid proteins including variants transcending the natural repertoire of signaling proteins.

Signal transduction in light-oxygen-voltage receptors lacking the adduct-forming cysteine residue.

blue LOV domains Background
Nat Commun, 9 Dec 2015 DOI: 10.1038/ncomms10079 Link to full text
Abstract: Light-oxygen-voltage (LOV) receptors sense blue light through the photochemical generation of a covalent adduct between a flavin-nucleotide chromophore and a strictly conserved cysteine residue. Here we show that, after cysteine removal, the circadian-clock LOV-protein Vivid still undergoes light-induced dimerization and signalling because of flavin photoreduction to the neutral semiquinone (NSQ). Similarly, photoreduction of the engineered LOV histidine kinase YF1 to the NSQ modulates activity and downstream effects on gene expression. Signal transduction in both proteins hence hinges on flavin protonation, which is common to both the cysteinyl adduct and the NSQ. This general mechanism is also conserved by natural cysteine-less, LOV-like regulators that respond to chemical or photoreduction of their flavin cofactors. As LOV proteins can react to light even when devoid of the adduct-forming cysteine, modern LOV photoreceptors may have arisen from ancestral redox-active flavoproteins. The ability to tune LOV reactivity through photoreduction may have important implications for LOV mechanism and optogenetic applications.

Photoreceptor engineering.

blue cyan red UV Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Front Mol Biosci, 17 Jun 2015 DOI: 10.3389/fmolb.2015.00030 Link to full text
Abstract: Sensory photoreceptors not only control diverse adaptive responses in Nature, but as light-regulated actuators they also provide the foundation for optogenetics, the non-invasive and spatiotemporally precise manipulation of cellular events by light. Novel photoreceptors have been engineered that establish control by light over manifold biological processes previously inaccessible to optogenetic intervention. Recently, photoreceptor engineering has witnessed a rapid development, and light-regulated actuators for the perturbation of a plethora of cellular events are now available. Here, we review fundamental principles of photoreceptors and light-regulated allostery. Photoreceptors dichotomize into associating receptors that alter their oligomeric state as part of light-regulated allostery and non-associating receptors that do not. A survey of engineered photoreceptors pinpoints light-regulated association reactions and order-disorder transitions as particularly powerful and versatile design principles. Photochromic photoreceptors that are bidirectionally toggled by two light colors augur enhanced spatiotemporal resolution and use as photoactivatable fluorophores. By identifying desirable traits in engineered photoreceptors, we provide pointers for the design of future, light-regulated actuators.

Engineering of a red-light-activated human cAMP/cGMP-specific phosphodiesterase.

red LAPD CHO in vitro zebrafish in vivo Immediate control of second messengers
Proc Natl Acad Sci USA, 2 Jun 2014 DOI: 10.1073/pnas.1321600111 Link to full text
Abstract: Sensory photoreceptors elicit vital physiological adaptations in response to incident light. As light-regulated actuators, photoreceptors underpin optogenetics, which denotes the noninvasive, reversible, and spatiotemporally precise perturbation by light of living cells and organisms. Of particular versatility, naturally occurring photoactivated adenylate cyclases promote the synthesis of the second messenger cAMP under blue light. Here, we have engineered a light-activated phosphodiesterase (LAPD) with complementary light sensitivity and catalytic activity by recombining the photosensor module of Deinococcus radiodurans bacterial phytochrome with the effector module of Homo sapiens phosphodiesterase 2A. Upon red-light absorption, LAPD up-regulates hydrolysis of cAMP and cGMP by up to sixfold, whereas far-red light can be used to down-regulate activity. LAPD also mediates light-activated cAMP and cGMP hydrolysis in eukaryotic cell cultures and in zebrafish embryos; crucially, the biliverdin chromophore of LAPD is available endogenously and does not need to be provided exogenously. LAPD thus establishes a new optogenetic modality that permits light control over diverse cAMP/cGMP-mediated physiological processes. Because red light penetrates tissue more deeply than light of shorter wavelengths, LAPD appears particularly attractive for studies in living organisms.

Biophysical, mutational, and functional investigation of the chromophore-binding pocket of light-oxygen-voltage photoreceptors.

blue LOV domains Background
ACS Synth Biol, 5 Mar 2014 DOI: 10.1021/sb400205x Link to full text
Abstract: As light-regulated actuators, sensory photoreceptors underpin optogenetics and numerous applications in synthetic biology. Protein engineering has been applied to fine-tune the properties of photoreceptors and to generate novel actuators. For the blue-light-sensitive light-oxygen-voltage (LOV) photoreceptors, mutations near the flavin chromophore modulate response kinetics and the effective light responsiveness. To probe for potential, inadvertent effects on receptor activity, we introduced these mutations into the engineered LOV photoreceptor YF1 and determined their impact on light regulation. While several mutations severely impaired the dynamic range of the receptor (e.g., I39V, R63K, and N94A), residue substitutions in a second group were benign with little effect on regulation (e.g., V28T, N37C, and L82I). Electron paramagnetic resonance and absorption spectroscopy identified correlated effects for certain of the latter mutations on chromophore environment and response kinetics in YF1 and the LOV2 domain from Avena sativa phototropin 1. Carefully chosen mutations provide a powerful means to adjust the light-response function of photoreceptors as demanded for diverse applications.

From dusk till dawn: one-plasmid systems for light-regulated gene expression.

blue YtvA E. coli
J Mol Biol, 8 Jan 2012 DOI: 10.1016/j.jmb.2012.01.001 Link to full text
Abstract: Signaling photoreceptors mediate diverse organismal adaptations in response to light. As light-gated protein switches, signaling photoreceptors provide the basis for optogenetics, a term that refers to the control of organismal physiology and behavior by light. We establish as novel optogenetic tools the plasmids pDusk and pDawn, which employ blue-light photoreceptors to confer light-repressed or light-induced gene expression in Escherichia coli with up to 460-fold induction upon illumination. Key features of these systems are low background activity, high dynamic range, spatial control on the 20-μm scale, independence from exogenous factors, and ease of use. In optogenetic experiments, pDusk and pDawn can be used to specifically perturb individual nodes of signaling networks and interrogate their role. On the preparative scale, pDawn can induce by light the production of recombinant proteins and thus represents a cost-effective and readily automated alternative to conventional induction systems.

Structure and function of plant photoreceptors.

blue near-infrared red Cryptochromes Fluorescent proteins LOV domains Phytochromes Review Background
Annu Rev Plant Biol, 25 Jan 2010 DOI: 10.1146/annurev-arplant-042809-112259 Link to full text
Abstract: Signaling photoreceptors use the information contained in the absorption of a photon to modulate biological activity in plants and a wide range of organisms. The fundamental-and as yet imperfectly answered-question is, how is this achieved at the molecular level? We adopt the perspective of biophysicists interested in light-dependent signal transduction in nature and the three-dimensional structures that underpin signaling. Six classes of photoreceptors are known: light-oxygen-voltage (LOV) sensors, xanthopsins, phytochromes, blue-light sensors using flavin adenine dinucleotide (BLUF), cryptochromes, and rhodopsins. All are water-soluble proteins except rhodopsins, which are integral membrane proteins; all are based on a modular architecture except cryptochromes and rhodopsins; and each displays a distinct, light-dependent chemical process based on the photochemistry of their nonprotein chromophore, such as isomerization about a double bond (xanthopsins, phytochromes, and rhodopsins), formation or rupture of a covalent bond (LOV sensors), or electron transfer (BLUF sensors and cryptochromes).

Design and signaling mechanism of light-regulated histidine kinases.

blue YtvA E. coli in vitro Signaling cascade control
J Mol Biol, 14 Dec 2008 DOI: 10.1016/j.jmb.2008.12.017 Link to full text
Abstract: Signal transduction proteins are organized into sensor (input) domains that perceive a signal and, in response, regulate the biological activity of effector (output) domains. We reprogrammed the input signal specificity of a normally oxygen-sensitive, light-inert histidine kinase by replacing its chemosensor domain by a light-oxygen-voltage photosensor domain. Illumination of the resultant fusion kinase YF1 reduced net kinase activity by approximately 1000-fold in vitro. YF1 also controls gene expression in a light-dependent manner in vivo. Signals are transmitted from the light-oxygen-voltage sensor domain to the histidine kinase domain via a 40 degrees -60 degrees rotational movement within an alpha-helical coiled-coil linker; light is acting as a rotary switch. These signaling principles are broadly applicable to domains linked by alpha-helices and to chemo- and photosensors. Conserved sequence motifs guide the rational design of light-regulated variants of histidine kinases and other proteins.

Structural basis for light-dependent signaling in the dimeric LOV domain of the photosensor YtvA.

blue LOV domains Background
J Mol Biol, 2 Aug 2007 DOI: 10.1016/j.jmb.2007.07.039 Link to full text
Abstract: The photosensor YtvA binds flavin mononucleotide and regulates the general stress reaction in Bacillus subtilis in response to blue light illumination. It belongs to the family of light-oxygen-voltage (LOV) proteins that were first described in plant phototropins and form a subgroup of the Per-Arnt-Sim (PAS) superfamily. Here, we report the three-dimensional structure of the LOV domain of YtvA in its dark and light states. The protein assumes the global fold common to all PAS domains and dimerizes via a hydrophobic interface. Directly C-terminal to the core of the LOV domain, an alpha-helix extends into the solvent. Light absorption causes formation of a covalent bond between a conserved cysteine residue and atom C(4a) of the FMN ring, which triggers rearrangements throughout the LOV domain. Concomitantly, in the dark and light structures, the two subunits of the dimeric protein rotate relative to each other by 5 degrees . This small quaternary structural change is presumably a component of the mechanism by which the activity of YtvA is regulated in response to light. In terms of both structure and signaling mechanism, YtvA differs from plant phototropins and more closely resembles prokaryotic heme-binding PAS domains.
Submit a new publication to our database