Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 14 of 14 results
1.

Engineering Improved Photoswitches for the Control of Nucleocytoplasmic Distribution.

blue AsLOV2 HeLa in vitro S. cerevisiae Epigenetic modification
ACS Synth Biol, 15 Nov 2018 DOI: 10.1021/acssynbio.8b00368 Link to full text
Abstract: Optogenetic techniques use light-responsive proteins to study dynamic processes in living cells and organisms. These techniques typically rely on repurposed naturally occurring light-sensitive proteins to control sub-cellular localization and activity. We previously engineered two optogenetic systems, the Light Activated Nuclear Shuttle (LANS) and the Light-Inducible Nuclear eXporter (LINX), by embedding nuclear import or export sequence motifs into the C-terminal helix of the light-responsive LOV2 domain of Avena sativa phototropin 1, thus enabling light-dependent trafficking of a target protein into and out of the nucleus. While LANS and LINX are effective tools, we posited that mutations within the LOV2 hinge-loop, which connects the core PAS domain and the C-terminal helix, would further improve the functionality of these switches. Here, we identify hinge-loop mutations that favourably shift the dynamic range (the ratio of the on- to off-target subcellular accumulation) of the LANS and LINX photoswitches. We demonstrate the utility of these new optogenetic tools to control gene transcription and epigenetic modifications, thereby expanding the optogenetic 'tool kit' for the research community.
2.

Light-dependent cytoplasmic recruitment enhances the dynamic range of a nuclear import photoswitch.

blue LOVTRAP C. elegans in vivo HeLa S. cerevisiae Developmental processes
Chembiochem, 14 Feb 2018 DOI: 10.1002/cbic.201700681 Link to full text
Abstract: Cellular signal transduction is often regulated at multiple steps in order to achieve more complex logic or precise control of a pathway. For instance, some signaling mechanisms couple allosteric activation with localization to achieve high signal to noise. Here, we create a system for light activated nuclear import that incorporates two levels of control. It consists of a nuclear import photoswitch, Light Activated Nuclear Shuttle (LANS), and a protein engineered to preferentially interact with LANS in the dark, Zdk2. First, Zdk2 is tethered to a location in the cytoplasm, which sequesters LANS in the dark. Second, LANS incorporates a nuclear localization signal (NLS) that is sterically blocked from binding to the nuclear import machinery in the dark. When activated with light, LANS both dissociates from its tethered location and exposes its NLS, which leads to nuclear accumulation. We demonstrate that this coupled system improves the dynamic range of LANS in mammalian cells, yeast, and C. elegans and provides tighter control of transcription factors that have been fused to LANS.
3.

Control of microtubule dynamics using an optogenetic microtubule plus end-F-actin cross-linker.

blue iLID Schneider 2 Control of cytoskeleton / cell motility / cell shape
J Cell Biol, 19 Dec 2017 DOI: 10.1083/jcb.201705190 Link to full text
Abstract: We developed a novel optogenetic tool, SxIP-improved light-inducible dimer (iLID), to facilitate the reversible recruitment of factors to microtubule (MT) plus ends in an end-binding protein-dependent manner using blue light. We show that SxIP-iLID can track MT plus ends and recruit tgRFP-SspB upon blue light activation. We used this system to investigate the effects of cross-linking MT plus ends and F-actin in Drosophila melanogaster S2 cells to gain insight into spectraplakin function and mechanism. We show that SxIP-iLID can be used to temporally recruit an F-actin binding domain to MT plus ends and cross-link the MT and F-actin networks. Cross-linking decreases MT growth velocities and generates a peripheral MT exclusion zone. SxIP-iLID facilitates the general recruitment of specific factors to MT plus ends with temporal control enabling researchers to systematically regulate MT plus end dynamics and probe MT plus end function in many biological processes.
4.

Cells lay their own tracks: optogenetic Cdc42 activation stimulates fibronectin deposition supporting directed migration.

blue iLID isolated MEFs mouse IA32 fibroblasts Control of cytoskeleton / cell motility / cell shape
J Cell Sci, 28 Jul 2017 DOI: 10.1242/jcs.205948 Link to full text
Abstract: Rho GTPase family members are known regulators of directed migration and therefore play key roles in processes including development, immune response and cancer metastasis. However, their individual contributions to these processes are complex. Here, we regulate the activity of two family members, Rac and Cdc42, by optogenetically recruiting specific GEF DH/PH domains to defined regions on the cell membrane. We find that the localized activation of both GTPases produce lamellipodia in cells plated on a fibronectin substrate. Using a novel optotaxis assay, we show that biased activation can drive directional migration. Interestingly, in the absence of exogenous fibronectin, Rac activation is insufficient to produce stable lamellipodia or directional migration while Cdc42 activation is sufficient. We find that a remarkably small amount of fibronectin (<10 puncta per protrusion) is necessary to support stable GTPase-driven lamellipodia. Cdc42 bypasses the need for exogenous fibronectin by stimulating cellular fibronectin deposition under the newly formed lamellipodia.
5.

Tuning the Binding Affinities and Reversion Kinetics of a Light Inducible Dimer Allows Control of Transmembrane Protein Localization.

blue iLID in vitro mouse IA32 fibroblasts rat hippocampal neurons
Biochemistry, 8 Sep 2016 DOI: 10.1021/acs.biochem.6b00529 Link to full text
Abstract: Inducible dimers are powerful tools for controlling biological processes through colocalizing signaling molecules. To be effective, an inducible system should have a dissociation constant in the "off" state that is greater (i.e., weaker affinity) than the concentrations of the molecules that are being controlled, and in the "on" state a dissociation constant that is less (i.e., stronger affinity) than the relevant protein concentrations. Here, we reengineer the interaction between the light inducible dimer, iLID, and its binding partner SspB, to better control proteins present at high effective concentrations (5-100 μM). iLID contains a light-oxygen-voltage (LOV) domain that undergoes a conformational change upon activation with blue light and exposes a peptide motif, ssrA, that binds to SspB. The new variant of the dimer system contains a single SspB point mutation (A58V), and displays a 42-fold change in binding affinity when activated with blue light (from 3 ± 2 μM to 125 ± 40 μM) and allows for light-activated colocalization of transmembrane proteins in neurons, where a higher affinity switch (0.8-47 μM) was less effective because more colocalization was seen in the dark. Additionally, with a point mutation in the LOV domain (N414L), we lengthened the reversion half-life of iLID. This expanded suite of light induced dimers increases the variety of cellular pathways that can be targeted with light.
6.

LOVTRAP: an optogenetic system for photoinduced protein dissociation.

blue LOVTRAP HEK293 HeLa in vitro Control of cytoskeleton / cell motility / cell shape
Nat Methods, 18 Jul 2016 DOI: 10.1038/nmeth.3926 Link to full text
Abstract: LOVTRAP is an optogenetic approach for reversible light-induced protein dissociation using protein A fragments that bind to the LOV domain only in the dark, with tunable kinetics and a >150-fold change in the dissociation constant (Kd). By reversibly sequestering proteins at mitochondria, we precisely modulated the proteins' access to the cell edge, demonstrating a naturally occurring 3-mHz cell-edge oscillation driven by interactions of Vav2, Rac1, and PI3K proteins.
7.

Engineering and Application of LOV2-Based Photoswitches.

blue LOV domains Review
Meth Enzymol, 1 Jul 2016 DOI: 10.1016/bs.mie.2016.05.058 Link to full text
Abstract: Cellular optogenetic switches, a novel class of biological tools, have improved our understanding of biological phenomena that were previously intractable. While the design and engineering of these proteins has historically varied, they are all based on borrowed elements from plant and bacterial photoreceptors. In general terms, each of the optogenetic switches designed to date exploits the endogenous light-induced change in photoreceptor conformation while repurposing its effect to target a different biological phenomenon. We focus on the well-characterized light-oxygen-voltage 2 (LOV2) domain from Avena sativa phototropin 1 as our cornerstone for design. While the function of the LOV2 domain in the context of the phototropin protein is not fully elucidated, its thorough biophysical characterization as an isolated domain has created a strong foundation for engineering of photoswitches. In this chapter, we examine the biophysical characteristics of the LOV2 domain that may be exploited to produce an optogenetic switch and summarize previous design efforts to provide guidelines for an effective design. Furthermore, we provide protocols for assays including fluorescence polarization, phage display, and microscopy that are optimized for validating, improving, and using newly designed photoswitches.
8.

Go in! Go out! Inducible control of nuclear localization.

blue red UV LOV domains Phytochromes UV receptors Review
Curr Opin Chem Biol, 30 Jun 2016 DOI: 10.1016/j.cbpa.2016.06.009 Link to full text
Abstract: Cells have evolved a variety of mechanisms to regulate the enormous complexity of processes taking place inside them. One mechanism consists in tightly controlling the localization of macromolecules, keeping them away from their place of action until needed. Since a large fraction of the cellular response to external stimuli is mediated by gene expression, it is not surprising that transcriptional regulators are often subject to stimulus-induced nuclear import or export. Here we review recent methods in chemical biology and optogenetics for controlling the nuclear localization of proteins of interest inside living cells. These methods allow researchers to regulate protein activity with exquisite spatiotemporal control, and open up new possibilities for studying the roles of proteins in a broad array of cellular processes and biological functions.
9.

Light-induced nuclear export reveals rapid dynamics of epigenetic modifications.

blue AsLOV2 iLID C. elegans in vivo Cos-7 HeLa mouse IA32 fibroblasts S. cerevisiae Epigenetic modification
Nat Chem Biol, 18 Apr 2016 DOI: 10.1038/nchembio.2068 Link to full text
Abstract: We engineered a photoactivatable system for rapidly and reversibly exporting proteins from the nucleus by embedding a nuclear export signal in the LOV2 domain from phototropin 1. Fusing the chromatin modifier Bre1 to the photoswitch, we achieved light-dependent control of histone H2B monoubiquitylation in yeast, revealing fast turnover of the ubiquitin mark. Moreover, this inducible system allowed us to dynamically monitor the status of epigenetic modifications dependent on H2B ubiquitylation.
10.

Correlating in Vitro and in Vivo Activities of Light-Inducible Dimers: A Cellular Optogenetics Guide.

blue CRY2/CIB1 iLID TULIP in vitro mouse IA32 fibroblasts S. cerevisiae Control of cytoskeleton / cell motility / cell shape Benchmarking
ACS Synth Biol, 30 Oct 2015 DOI: 10.1021/acssynbio.5b00119 Link to full text
Abstract: Light-inducible dimers are powerful tools for cellular optogenetics, as they can be used to control the localization and activity of proteins with high spatial and temporal resolution. Despite the generality of the approach, application of light-inducible dimers is not always straightforward, as it is frequently necessary to test alternative dimer systems and fusion strategies before the desired biological activity is achieved. This process is further hindered by an incomplete understanding of the biophysical/biochemical mechanisms by which available dimers behave and how this correlates to in vivo function. To better inform the engineering process, we examined the biophysical and biochemical properties of three blue-light-inducible dimer variants (cryptochrome2 (CRY2)/CIB1, iLID/SspB, and LOVpep/ePDZb) and correlated these characteristics to in vivo colocalization and functional assays. We find that the switches vary dramatically in their dark and lit state binding affinities and that these affinities correlate with activity changes in a variety of in vivo assays, including transcription control, intracellular localization studies, and control of GTPase signaling. Additionally, for CRY2, we observe that light-induced changes in homo-oligomerization can have significant effects on activity that are sensitive to alternative fusion strategies.
11.

Control of Protein Activity and Cell Fate Specification via Light-Mediated Nuclear Translocation.

blue AsLOV2 C. elegans in vivo Cos-7 HEK293 HeLa S. cerevisiae Developmental processes
PLoS ONE, 17 Jun 2015 DOI: 10.1371/journal.pone.0128443 Link to full text
Abstract: Light-activatable proteins allow precise spatial and temporal control of biological processes in living cells and animals. Several approaches have been developed for controlling protein localization with light, including the conditional inhibition of a nuclear localization signal (NLS) with the Light Oxygen Voltage (AsLOV2) domain of phototropin 1 from Avena sativa. In the dark, the switch adopts a closed conformation that sterically blocks the NLS motif. Upon activation with blue light the C-terminus of the protein unfolds, freeing the NLS to direct the protein to the nucleus. A previous study showed that this approach can be used to control the localization and activity of proteins in mammalian tissue culture cells. Here, we extend this result by characterizing the binding properties of a LOV/NLS switch and demonstrating that it can be used to control gene transcription in yeast. Additionally, we show that the switch, referred to as LANS (light-activated nuclear shuttle), functions in the C. elegans embryo and allows for control of nuclear localization in individual cells. By inserting LANS into the C. elegans lin-1 locus using Cas9-triggered homologous recombination, we demonstrated control of cell fate via light-dependent manipulation of a native transcription factor. We conclude that LANS can be a valuable experimental method for spatial and temporal control of nuclear localization in vivo.
12.

Engineering an improved light-induced dimer (iLID) for controlling the localization and activity of signaling proteins.

blue AsLOV2 iLID in vitro mouse IA32 fibroblasts Control of cytoskeleton / cell motility / cell shape
Proc Natl Acad Sci USA, 22 Dec 2014 DOI: 10.1073/pnas.1417910112 Link to full text
Abstract: The discovery of light-inducible protein-protein interactions has allowed for the spatial and temporal control of a variety of biological processes. To be effective, a photodimerizer should have several characteristics: it should show a large change in binding affinity upon light stimulation, it should not cross-react with other molecules in the cell, and it should be easily used in a variety of organisms to recruit proteins of interest to each other. To create a switch that meets these criteria we have embedded the bacterial SsrA peptide in the C-terminal helix of a naturally occurring photoswitch, the light-oxygen-voltage 2 (LOV2) domain from Avena sativa. In the dark the SsrA peptide is sterically blocked from binding its natural binding partner, SspB. When activated with blue light, the C-terminal helix of the LOV2 domain undocks from the protein, allowing the SsrA peptide to bind SspB. Without optimization, the switch exhibited a twofold change in binding affinity for SspB with light stimulation. Here, we describe the use of computational protein design, phage display, and high-throughput binding assays to create an improved light inducible dimer (iLID) that changes its affinity for SspB by over 50-fold with light stimulation. A crystal structure of iLID shows a critical interaction between the surface of the LOV2 domain and a phenylalanine engineered to more tightly pin the SsrA peptide against the LOV2 domain in the dark. We demonstrate the functional utility of the switch through light-mediated subcellular localization in mammalian cell culture and reversible control of small GTPase signaling.
13.

Designing photoswitchable peptides using the AsLOV2 domain.

blue AsLOV2 S. cerevisiae
Chem Biol, 20 Apr 2012 DOI: 10.1016/j.chembiol.2012.02.006 Link to full text
Abstract: Photocontrol of functional peptides is a powerful tool for spatial and temporal control of cell signaling events. We show that the genetically encoded light-sensitive LOV2 domain of Avena Sativa phototropin 1 (AsLOV2) can be used to reversibly photomodulate the affinity of peptides for their binding partners. Sequence analysis and molecular modeling were used to embed two peptides into the Jα helix of the AsLOV2 domain while maintaining AsLOV2 structure in the dark but allowing for binding to effector proteins when the Jα helix unfolds in the light. Caged versions of the ipaA and SsrA peptides, LOV-ipaA and LOV-SsrA, bind their targets with 49- and 8-fold enhanced affinity in the light, respectively. These switches can be used as general tools for light-dependent colocalization, which we demonstrate with photo-activable gene transcription in yeast.
14.

A genetically encoded photoactivatable Rac controls the motility of living cells.

blue AsLOV2 3T3MEF HEK293 HeLa in vitro Control of cytoskeleton / cell motility / cell shape
Nature, 19 Aug 2009 DOI: 10.1038/nature08241 Link to full text
Abstract: The precise spatio-temporal dynamics of protein activity are often critical in determining cell behaviour, yet for most proteins they remain poorly understood; it remains difficult to manipulate protein activity at precise times and places within living cells. Protein activity has been controlled by light, through protein derivatization with photocleavable moieties or using photoreactive small-molecule ligands. However, this requires use of toxic ultraviolet wavelengths, activation is irreversible, and/or cell loading is accomplished via disruption of the cell membrane (for example, through microinjection). Here we have developed a new approach to produce genetically encoded photoactivatable derivatives of Rac1, a key GTPase regulating actin cytoskeletal dynamics in metazoan cells. Rac1 mutants were fused to the photoreactive LOV (light oxygen voltage) domain from phototropin, sterically blocking Rac1 interactions until irradiation unwound a helix linking LOV to Rac1. Photoactivatable Rac1 (PA-Rac1) could be reversibly and repeatedly activated using 458- or 473-nm light to generate precisely localized cell protrusions and ruffling. Localized Rac activation or inactivation was sufficient to produce cell motility and control the direction of cell movement. Myosin was involved in Rac control of directionality but not in Rac-induced protrusion, whereas PAK was required for Rac-induced protrusion. PA-Rac1 was used to elucidate Rac regulation of RhoA in cell motility. Rac and Rho coordinate cytoskeletal behaviours with seconds and submicrometre precision. Their mutual regulation remains controversial, with data indicating that Rac inhibits and/or activates Rho. Rac was shown to inhibit RhoA in mouse embryonic fibroblasts, with inhibition modulated at protrusions and ruffles. A PA-Rac crystal structure and modelling revealed LOV-Rac interactions that will facilitate extension of this photoactivation approach to other proteins.
Submit a new publication to our database