Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 4 of 4 results

Optogenetic lac operon to control chemical and protein production in Escherichia coli with light.

blue YtvA E. coli Transgene expression
bioRxiv, 16 Nov 2019 DOI: 10.1101/845453 Link to full text
Abstract: Control of the lac operon with IPTG has been used for decades to regulate gene expression in E. coli for countless applications, including metabolic engineering and recombinant protein production. However, optogenetics offers unique capabilities such as easy tunability, reversibility, dynamic induction strength, and spatial control that are difficult to obtain with chemical inducers. We developed an optogenetic lac operon in a series of circuits we call OptoLAC. With these circuits, we control gene expression from various IPTG-inducible promoters using only blue light. Applying them to metabolic engineering improves mevalonate and isobutanol production by 24% and 27% respectively, compared to IPTG induction, in light-controlled fermentations scalable to at least 2L bioreactors. Furthermore, OptoLAC circuits enable light control of recombinant protein production, reaching yields comparable to IPTG induction, but with enhanced tunability of expression and spatial control. OptoLAC circuits are potentially useful to confer light controls over other cell functions originally engineered to be IPTG-inducible.

Optogenetic control of protein binding using light-switchable nanobodies.

blue AsLOV2 HEK293T in vitro NIH/3T3 Signaling cascade control
bioRxiv, 18 Aug 2019 DOI: 10.1101/739201 Link to full text
Abstract: A growing number of optogenetic tools have been developed to control binding between two engineered protein domains. In contrast, relatively few tools confer light-switchable binding to a generic target protein of interest. Such a capability would offer substantial advantages, enabling photoswitchable binding to endogenous target proteins in vivo or light-based protein purification in vitro. Here, we report the development of opto-nanobodies (OptoNBs), a versatile class of chimeric photoswitchable proteins whose binding to proteins of interest can be enhanced or inhibited upon blue light illumination. We find that OptoNBs are suitable for a range of applications: modulating intracellular protein localization and signaling pathway activity and controlling target protein binding to surfaces and in protein separation columns. This work represents a first step towards programmable photoswitchable regulation of untagged, endogenous target proteins.

Light-based control of metabolic flux through assembly of synthetic organelles.

blue CRY2/CRY2 CRY2olig PixD/PixE S. cerevisiae Organelle manipulation
Nat Chem Biol, 13 May 2019 DOI: 10.1038/s41589-019-0284-8 Link to full text
Abstract: To maximize a desired product, metabolic engineers typically express enzymes to high, constant levels. Yet, permanent pathway activation can have undesirable consequences including competition with essential pathways and accumulation of toxic intermediates. Faced with similar challenges, natural metabolic systems compartmentalize enzymes into organelles or post-translationally induce activity under certain conditions. Here we report that optogenetic control can be used to extend compartmentalization and dynamic control to engineered metabolisms in yeast. We describe a suite of optogenetic tools to trigger assembly and disassembly of metabolically active enzyme clusters. Using the deoxyviolacein biosynthesis pathway as a model system, we find that light-switchable clustering can enhance product formation six-fold and product specificity 18-fold by decreasing the concentration of intermediate metabolites and reducing flux through competing pathways. Inducible compartmentalization of enzymes into synthetic organelles can thus be used to control engineered metabolic pathways, limit intermediates and favor the formation of desired products.

Optogenetic regulation of engineered cellular metabolism for microbial chemical production.

blue EL222 S. cerevisiae Transgene expression
Nature, 21 Mar 2018 DOI: 10.1038/nature26141 Link to full text
Abstract: The optimization of engineered metabolic pathways requires careful control over the levels and timing of metabolic enzyme expression. Optogenetic tools are ideal for achieving such precise control, as light can be applied and removed instantly without complex media changes. Here we show that light-controlled transcription can be used to enhance the biosynthesis of valuable products in engineered Saccharomyces cerevisiae. We introduce new optogenetic circuits to shift cells from a light-induced growth phase to a darkness-induced production phase, which allows us to control fermentation with only light. Furthermore, optogenetic control of engineered pathways enables a new mode of bioreactor operation using periodic light pulses to tune enzyme expression during the production phase of fermentation to increase yields. Using these advances, we control the mitochondrial isobutanol pathway to produce up to 8.49 ± 0.31 g l-1of isobutanol and 2.38 ± 0.06 g l-1of 2-methyl-1-butanol micro-aerobically from glucose. These results make a compelling case for the application of optogenetics to metabolic engineering for the production of valuable products.
Submit a new publication to our database