Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 16 of 16 results

A red light-controlled probiotic bio-system for in-situ gut-brain axis regulation.

red Cph1 E. coli Transgene expression Cell death
Biomaterials, 20 Jan 2023 DOI: 10.1016/j.biomaterials.2023.122005 Link to full text
Abstract: Microbes regulate brain function through the gut-brain axis, deriving the technology to modulate the gut-brain axis in situ by engineered probiotics. Optogenetics offers precise and flexible strategies for controlling the functions of probiotics in situ. However, the poor penetration of most frequently used short wavelength light has limited the application of optogenetic probiotics in the gut. Herein, a red-light optogenetic gut probiotic was applied for drug production and delivery and regulation of the host behaviors. Firstly, a Red-light Optogenetic E. coli Nissle 1917 strain (ROEN) that could respond to red light and release drug product by light-controlled lysis was constructed. The remaining optical power of red light after 3 cm tissue was still able to initiate gene expression of ROEN and produce about approximately 3-fold induction efficiency. To give full play to the in vivo potential of ROEN, its responsive ability of the penetrated red light was tested, and its encapsulation was realized by PH-sensitive alginate microcapsules for further oral administration. The function of ROEN for gut-brain regulation was realized by releasing Exendin-4 fused with anti-neonatal Fc receptor affibody. Neuroprotection and behavioral regulation effects were evaluated in the Parkinson's disease mouse model, after orally administration of ROEN delivering Exendin-4 under optogenetic control in the murine gut. The red-light optogenetic probiotic might be a perspective platform for in situ drug delivery and gut-brain axis regulation.

Upconversion Optogenetic Engineered Bacteria System for Time-Resolved Imaging Diagnosis and Light-Controlled Cancer Therapy.

blue YtvA E. coli Transgene expression Cell death
ACS Appl Mater Interfaces, 6 Oct 2022 DOI: 10.1021/acsami.2c14633 Link to full text
Abstract: Engineering bacteria can achieve targeted and controllable cancer therapy using synthetic biology technology and the characteristics of tumor microenvironment. Besides, the accurate tumor diagnosis and visualization of the treatment process are also vital for bacterial therapy. In this paper, a light control engineered bacteria system based on upconversion nanoparticles (UCNP)-mediated time-resolved imaging (TRI) was constructed for colorectal cancer theranostic and therapy. UCNP with different luminous lifetimes were separately modified with the tumor targeting molecule (folic acid) or anaerobic bacteria (Nissle 1917, EcN) to realize the co-localization of tumor tissues, thus improving the diagnostic accuracy based on TRI. In addition, blue light was used to induce engineered bacteria (EcN-pDawn-φx174E/TRAIL) lysis and the release of tumor apoptosis-related inducing ligand (TRAIL), thus triggering tumor cell death. In vitro and in vivo results indicated that this system could achieve accurate tumor diagnosis and light-controlled cancer therapy. EcN-pDawn-φx174E/TRAIL with blue light irradiation could inhibit 53% of tumor growth in comparison to that without blue light irradiation (11.8%). We expect that this engineered bacteria system provides a new technology for intelligent bacterial therapy and the construction of cancer theranostics.

Recent advances in cellular optogenetics for photomedicine.

blue cyan green near-infrared red UV violet PhyB/PIF6 BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Adv Drug Deliv Rev, 16 Jul 2022 DOI: 10.1016/j.addr.2022.114457 Link to full text
Abstract: Since the successful introduction of exogenous photosensitive proteins, channelrhodopsin, to neurons, optogenetics has enabled substantial understanding of profound brain function by selectively manipulating neural circuits. In an optogenetic system, optical stimulation can be precisely delivered to brain tissue to achieve regulation of cellular electrical activity with unprecedented spatio-temporal resolution in living organisms. In recent years, the development of various optical actuators and novel light-delivery techniques has greatly expanded the scope of optogenetics, enabling the control of other signal pathways in non-neuronal cells for different biomedical applications, such as phototherapy and immunotherapy. This review focuses on the recent advances in optogenetic regulation of cellular activities for photomedicine. We discuss emerging optogenetic tools and light-delivery platforms, along with a survey of optogenetic execution in mammalian and microbial cells.

Hydrogel microcapsules containing engineered bacteria for sustained production and release of protein drugs.

blue EL222 E. coli Transgene expression Cell death
Biomaterials, 5 Jun 2022 DOI: 10.1016/j.biomaterials.2022.121619 Link to full text
Abstract: Subcutaneous administration of sustained-release formulations is a common strategy for protein drugs, which avoids first pass effect and has high bioavailability. However, conventional sustained-release strategies can only load a limited amount of drug, leading to insufficient durability. Herein, we developed microcapsules based on engineered bacteria for sustained release of protein drugs. Engineered bacteria were carried in microcapsules for subcutaneous administration, with a production-lysis circuit for sustained protein production and release. Administrated in diabetic rats, engineered bacteria microcapsules was observed to smoothly release Exendin-4 for 2 weeks and reduce blood glucose. In another example, by releasing subunit vaccines with bacterial microcomponents as vehicles, engineered bacterial microcapsules activated specific immunity in mice and achieved tumor prevention. The engineered bacteria microcapsules have potential to durably release protein drugs and show versatility on the size of drugs. It might be a promising design strategy for long-acting in situ drug factory.

Light-Sensitive Lactococcus lactis for Microbe-Gut-Brain Axis Regulating via Upconversion Optogenetic Micro-Nano System.

blue YtvA L. lactis Transgene expression
ACS Nano, 1 Apr 2022 DOI: 10.1021/acsnano.1c11536 Link to full text
Abstract: The discovery of the gut-brain axis has proven that brain functions can be affected by the gut microbiota's metabolites, so there are significant opportunities to explore new tools to regulate gut microbiota and thus work on the brain functions. Meanwhile, engineered bacteria as oral live biotherapeutic agents to regulate the host's healthy homeostasis have attracted much attention in microbial therapy. However, whether this strategy is able to remotely regulate the host's brain function in vivo has not been investigated. Here, we engineered three blue-light-responsive probiotics as oral live biotherapeutic agents. They are spatiotemporally delivered and controlled by the upconversion optogenetic micro-nano system. This micro-nano system promotes the small intestine targeting and production of the exogenous L. lactis in the intestines, which realizes precise manipulation of brain functions including anxiety behavior, Parkinson's disease, and vagal afferent. The noninvasive and real-time probiotic intervention strategy makes the communiation from the gut to the host more controllable, which will enable the potential for engineered microbes accurately and effectively regulating a host's health.

NIR-Responsive Photodynamic Nanosystem Combined with Antitumor Immune Optogenetics Bacteria for Precise Synergetic Therapy.

blue YtvA L. lactis Transgene expression
ACS Appl Mater Interfaces, 9 Mar 2022 DOI: 10.1021/acsami.2c01138 Link to full text
Abstract: Photodynamic therapy (PDT) and immunotherapy are considered promising methods for the treatment of tumors. However, these treatment systems are still suffering from shortcomings such as hypoxia, easy metastasis, and delayed immune response during PDT. Therefore, it is still challenging to establish a programmed and rapid response immune combination therapy platform. Here, we construct a two-step synergetic therapy platform for the treatment of primary tumors and distant tumors using upconversion nanoparticles (UCNPs) and engineered bacteria as therapeutic media. In the first step, erbium ion (Er3+)-doped UCNPs act as a photoswitcher to activate the photosensitizer ZnPc to produce 1O2 for primary tumor therapy. In the second step, thulium ion (Tm3+)-doped UCNPs can emit blue-violet light under the excitation of near-infrared (NIR) light to activate the engineered bacteria to produce interferon (INF-γ) and release them in the intestine, which can not only treat tumors directly but also act with PDT to regulate immune pathways to activate the immune system, resulting in a joint immunotherapy effect to inhibit the growth of distant tumors. As a new type of programmatic combination therapy, we have proved that this platform can jointly activate the body's immune system during PDT and immunization treatment and can effectively inhibit tumor metastasis.

Optogenetic operated probiotics to regulate host metabolism by mimicking enteroendocrine.

blue YtvA L. lactis Transgene expression
bioRxiv, 1 Dec 2021 DOI: 10.1101/2021.11.30.470589 Link to full text
Abstract: The enteroendocrine system plays an important role in metabolism. The gut microbiome regulates enteroendocrine in an extensive way, arousing attention in biomedicine. However, conventional strategies of enteroendocrine regulation via gut microbiome are usually non-specific or imprecise. Here, an optogenetic operated probiotics system was developed combining synthetic biology and flexible electronics to achieve in situ controllable secretion to mimic enteroendocrine. Firstly, optogenetic engineered Lactococcus lactis (L. lactis) were administrated in the intestinal tract. A wearable optogenetic device was designed to control optical signals remotely. Then, L. lactis could secrete enteroendocrine hormone according to optical signals. As an example, optogenetic L. lactis could secrete glucagon-like peptide-1(GLP-1) under the control of the wearable optogenetic device. To improve the half-life of GLP-1 in vivo, the Fc domain from immunoglobulin was fused. Treated with this strategy, blood glucose, weight and other features were relatively well controlled in rats and mice models. Furthermore, up-conversion microcapsules were introduced to increase the excitation wavelength of the optogenetic system for better penetrability. This strategy has biomedical potential in metabolic diseases therapy by mimicking enteroendocrine.

NIR light-responsive bacteria with live bio-glue coatings for precise colonization in the gut.

blue YtvA E. coli Signaling cascade control Transgene expression
Cell Rep, 14 Sep 2021 DOI: 10.1016/j.celrep.2021.109690 Link to full text
Abstract: Recombinant bacterial colonization plays an indispensable role in disease prevention, alleviation, and treatment. Successful application mainly depends on whether bacteria can efficiently spatiotemporally colonize the host gut. However, a primary limitation of existing methods is the lack of precise spatiotemporal regulation, resulting in uncontrolled methods that are less effective. Herein, we design upconversion microgels (UCMs) to convert near-infrared light (NIR) into blue light to activate recombinant light-responsive bacteria (Lresb) in vivo, where autocrine "functional cellular glues" made of adhesive proteins assist Lresb inefficiently colonizing the gut. The programmable engineering platform is further developed for the controlled and effective colonization of Escherichia coli Nissle 1917 (EcN) in the gut. The colonizing bacteria effectively alleviate DSS-induced colitis in mice. We anticipate that this approach could facilitate the clinical application of engineered microbial therapeutics to accurately and effectively regulate host health.

Engineered NIR light-responsive bacteria as anti-tumor agent for targeted and precise cancer therapy.

blue EL222 E. coli Signaling cascade control
Lancet Infect Dis, 5 Jul 2021 DOI: 10.1016/j.cej.2021.130842 Link to full text
Abstract: Engineered anaerobic bacteria known as live biotherapeutic products (LBPs) have shown great advances in cancer therapy. One advantage of anaerobic bacteria as drug carrier is that it spontaneously target to tumor and persistently release anti-tumor factors. To realize effective anti-cancer therapeutics, one essential premise is to improve the controllability of treatment. Here, we designed near-infrared (NIR)-light responsive bacteria as anti-tumor agent, which is based on a blue-light responsive module and upconversion nanoparticles. The upconversion nanoparticles converted external NIR light to local blue light to noninvasively activate blue-light responsive module (EL222) in engineered LBPs. The activated LBPs then produce tumor necrosis factor α (TNFα) for precise tumor ablation. In vitro and in vivo results have proven that this engineered NIR-light-responsive bacteria could efficiently inhibit tumor growth. We anticipate that this controllable and safe bacteria-based therapy can facilitate the application of LBPs to accurately and effectively regulate diseases.

Optotheranostic Nanosystem with Phone Visual Diagnosis and Optogenetic Microbial Therapy for Ulcerative Colitis At-Home Care.

blue YtvA E. coli Transgene expression
ACS Nano, 5 Apr 2021 DOI: 10.1021/acsnano.1c00135 Link to full text
Abstract: Ulcerative colitis (UC) is a relapsing disorder characterized by chronic inflammation of the intestinal tract. However, the home care of UC based on remote monitoring, due to the operational complexity and time-consuming procedure, restrain its widespread applications. Here we constructed an optotheranostic nanosystem for self-diagnosis and long-acting mitigations of UC at home. The system included two major modules: (i) A disease prescreening module mediated by smartphone optical sensing. (ii) Disease real-time intervention module mediated by an optogenetic engineered bacteria system. Recombinant Escherichia coli Nissle 1917 (EcN) secreted interleukin-10 (IL-10) could downregulate inflammatory cascades and matrix metalloproteinases; it is a candidate for use in the therapeutic intervention of UC. The results showed that the Detector was able to analyze, report, and share the detection results in less than 1 min, and the limit of detection was 15 ng·mL-1. Besides, the IL-10-secreting EcN treatment suppressed the intestinal inflammatory response in UC mice and protected the intestinal mucosa against injury. The optotheranostic nanosystems enabled solutions to diagnose and treat disease at home, which promotes a mobile health service development.

CRISPR-dcas9 Optogenetic Nanosystem for the Blue Light-Mediated Treatment of Neovascular Lesions.

blue CRY2/CIB1 HeLa primary mouse retinal microvascular endothelial cells Nucleic acid editing
ACS Appl Bio Mater, 15 Feb 2021 DOI: 10.1021/acsabm.0c01465 Link to full text
Abstract: Vascular endothelial growth factor (VEGF) is the key regulator in neovascular lesions. The anti-VEGF injection is a major way to relieve retinal neovascularization and treat these diseases. However, current anti-VEGF therapeutics show significant drawbacks. The reason is the inability to effectively control its therapeutic effect. Therefore, how to controllably inhibit the VEGF target is a key point for preventing angiogenesis. Here, a CRISPR-dCas9 optogenetic nanosystem was designed for the precise regulation of pathologic neovascularization. This system is composed of a light-controlled regulatory component and transcription inhibition component. They work together to controllably and effectively inhibit the target gene's VEGF. The opto-CRISPR nanosystem achieved precise regulation according to individual differences, whereby the expression and interaction of gene was activated by light. The following representative model laser-induced choroid neovascularization and oxygen-induced retinopathy were taken as examples to verify the effect of this nanosystem. The results showed that the opto-CRISPR nanosystem was more efficacious in the light control group (NV area effectively reduced by 41.54%) than in the dark control group without light treatment. This strategy for the CRISPR-optogenetic gene nanosystem led to the development of approaches for treating severe eye diseases. Besides, any target gene of interest can be designed by merely replacing the guide RNA sequences in this system, which provided a method for light-controlled gene transcriptional repression.

Upconversion optogenetic micro-nanosystem optically controls the secretion of light-responsive bacteria for systemic immunity regulation.

blue YtvA E. coli L. lactis Transgene expression
Commun Biol, 9 Oct 2020 DOI: 10.1038/s42003-020-01287-4 Link to full text
Abstract: Chemical molecules specifically secreted into the blood and targeted tissues by intestinal microbiota can effectively affect the associated functions of the intestine especially immunity, representing a new strategy for immune-related diseases. However, proper ways of regulating the secretion metabolism of specific strains still remain to be established. In this article, an upconversion optogenetic micro-nanosystem was constructed to effectively regulate the specific secretion of engineered bacteria. The system included two major modules: (i) Modification of secretory light-responsive engineered bacteria. (ii) Optical sensing mediated by upconversion optogenetic micro-nanosystem. This system could regulate the efficient secretion of immune factors by engineered bacteria through optical manipulation. Inflammatory bowel disease and subcutaneously transplanted tumors were selected to verify the effectiveness of the system. Our results showed that the endogenous factor TGF-β1 could be controllably secreted to suppress the intestinal inflammatory response. Additionally, regulatory secretion of IFN-γ was promoted to slow the progression of B16F10 tumor.

Spatiotemporal regulation of ubiquitin-mediated protein degradation via upconversion optogenetic nanosystem.

blue VVD HEK293T HeLa MARC145 mouse in vivo
Nano Res, 14 Aug 2020 DOI: 10.1007/s12274-020-2998-z Link to full text
Abstract: Protein degradation technology, which is one of the most direct and effective ways to regulate the life activities of cells, is expected to be applied to the treatment of various diseases. However, current protein degradation technologies such as some small-molecule degraders which are unable to achieve spatiotemporal regulation, making them difficult to transform into clinical applications. In this article, an upconversion optogenetic nanosystem was designed to attain accurate regulation of protein degradation. This system worked via two interconnected parts: 1) the host cell expressed light-sensitive protein that could trigger the ubiquitinproteasome pathway upon blue-light exposure; 2) the light regulated light-sensitive protein by changing light conditions to achieve regulation of protein degradation. Experimental results based on model protein (Green Fluorescent Protein, GFP) validated that this system could fulfill protein degradation both in vitro (both Hela and 293T cells) and in vivo (by upconversion optogenetic nanosystem), and further demonstrated that we could reach spatiotemporal regulation by changing the illumination time (0–25 h) and the illumination frequency (the illuminating frequency of 0–30 s every 1 min). We further took another functional protein (The Nonstructural Protein 9, NSP9) into experiment. Results confirmed that the proliferation of porcine reproductive and respiratory syndrome virus (PRRSV) was inhibited by degrading the NSP9 in this light-induced system, and PRRSV proliferation was affected by different light conditions (illumination time varies from 0–24 h). We expected this system could provide new perspectives into spatiotemporal regulation of protein degradation and help realize the clinical application transformation for treating diseases of protein degradation technology.

Accurate manipulation of optogenetic proteins with wavelength tunable femtosecond laser system.

blue CRY2/CIB1 HEK293T HeLa
J Appl Phys, 25 Apr 2019 DOI: 10.1063/1.5084197 Link to full text
Abstract: Photoactivated proteins controlled by optogenetic tools have broad application prospects in cell biology, neuroscience, and brain science. However, due to the narrow excitation wavelength width and the inflexibility of spatiotemporal operations, conventional sources such as visible light severely limit the further application of optogenetics. In this work, a femtosecond laser-operated system based on the optogenetic application was designed to address these limitations. The interaction between the photoreceptor and its partner protein can be triggered by a wavelength-tunable femtosecond laser. The results indicated that this process can be used to accurately manipulate optogenetic proteins in cells, which met spectral flexibility (700–1040 nm) and operational flexibility in time and space (a single cell to multiple cells). To demonstrate the practical applications of this process, the apoptotic signaling pathway of cancer cells was taken as an example. We believe that this wavelength-tunable femtosecond laser system will promote the development of optogenetics, making optics and even physics more powerful tools in biology.

Near-infrared light remotely up-regulate autophagy with spatiotemporal precision via upconversion optogenetic nanosystem.

blue CRY2/CIB1 HEK293T HeLa mouse in vivo Signaling cascade control
Biomaterials, 1 Feb 2019 DOI: 10.1016/j.biomaterials.2019.01.042 Link to full text
Abstract: In vivo noninvasively manipulating biological functions by the mediation of biosafe near infrared (NIR) light is becoming increasingly popular. For these applications, upconversion rare-earth nanomaterial holds great promise as a novel photonic element, and has been widely adopted in optogenetics. In this article, an upconversion optogenetic nanosystem that was promised to achieve autophagy up-regulation with spatiotemporal precision was designed. The implantable, wireless, recyclable, less-invasive and biocompatible system worked via two separated parts: blue light-receptor optogenetics-autophagy upregulation plasmids, for protein import; upconversion rods-encapsulated flexible capsule (UCRs-capsule), for converting tissue-penetrative NIR light into local visible blue light. Results validated that this system could achieve up-regulation of autophagy in vitro (in both HeLa and 293T cell lines) and remotely penetrate tissue (∼3.5 mm) in vivo. Since autophagy serves at a central position in intracellular signalling pathways, which is correlative with diverse pathologies, we expect that this method could establish an upconversion material-based autophagy up-regulation strategy for fundamental and clinical applications.

Near-Infrared Light Triggered Upconversion Optogenetic Nanosystem for Cancer Therapy.

blue CRY2/CIB1 HeLa mouse in vivo Cell death
ACS Nano, 30 Oct 2017 DOI: 10.1021/acsnano.7b06395 Link to full text
Abstract: In vivo the application of optogenetic manipulation in deep tissue is seriously obstructed by the limited penetration depth of visible light that is continually applied to activate a photoactuator. Herein, we designed a versatile upconversion optogenetic nanosystem based on a blue-light-mediated heterodimerization module and rare-earth upconversion nanoparticles (UCNs). The UCNs worked as a nanotransducer to convert external deep-tissue-penetrating near-infrared (NIR) light to local blue light to noninvasively activate photoreceptors for optogenetic manipulation in vivo. In this, we demonstrated that deeply penetrating NIR light could be used to control the apoptotic signaling pathway of cancer cells in both mammalian cells and mice by UCNs. We believe that this interesting NIR-light-responsive upconversion optogenetic nanotechnology has significant application potentials for both basic research and clinical applications in vivo.
Submit a new publication to our database