Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 1 of 1 results

Optical regulation of endogenous RhoA reveals switching of cellular responses by signal amplitude.

blue cyan CRY2/CIB1 Dronpa145K/N pdDronpa1 TULIP HEK293A rat hippocampal neurons U-87 MG Endogenous gene expression
bioRxiv, 7 Feb 2021 DOI: 10.1101/2021.02.05.430013 Link to full text
Abstract: Precise control of the timing and amplitude of protein activity in living cells can explain how cells compute responses to complex biochemical stimuli. The small GTPase RhoA can promote either focal adhesion (FA) growth or cell edge retraction, but how a cell chooses between these opposite outcomes is poorly understood. Here, we developed a photoswitchable RhoA guanine exchange factor (psRhoGEF) to obtain precise optical control of endogenous RhoA activity. We find that low levels of RhoA activation by psRhoGEF induces edge retraction and FA disassembly, while high levels of RhoA activation induces both FA growth and disassembly. We observed that mDia-induced Src activation at FAs occurs preferentially at lower levels of RhoA activation. Strikingly, inhibition of Src causes a switch from FA disassembly to growth. Thus, rheostatic control of RhoA activation reveals how cells use signal amplitude and biochemical context to select between alternative responses to a single biochemical signal.
Submit a new publication to our database