Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 3 of 3 results
1.

Red-Light-Induced Genetic System for Control of Extracellular Electron Transfer.

blue red iLight YtvA E. coli S. oneidensis Transgene expression Endogenous gene expression Multichromatic
ACS Synth Biol, 2 May 2024 DOI: 10.1021/acssynbio.3c00684 Link to full text
Abstract: Optogenetics is a powerful tool for spatiotemporal control of gene expression. Several light-inducible gene regulators have been developed to function in bacteria, and these regulatory circuits have been ported to new host strains. Here, we developed and adapted a red-light-inducible transcription factor for Shewanella oneidensis. This regulatory circuit is based on the iLight optogenetic system, which controls gene expression using red light. A thermodynamic model and promoter engineering were used to adapt this system to achieve differential gene expression in light and dark conditions within a S. oneidensis host strain. We further improved the iLight optogenetic system by adding a repressor to invert the genetic circuit and activate gene expression under red light illumination. The inverted iLight genetic circuit was used to control extracellular electron transfer within S. oneidensis. The ability to use both red- and blue-light-induced optogenetic circuits simultaneously was also demonstrated. Our work expands the synthetic biology capabilities in S. oneidensis, which could facilitate future advances in applications with electrogenic bacteria.
2.

A red light-induced genetic system for control of extracellular electron transfer.

blue red iLight YtvA E. coli S. oneidensis Transgene expression Multichromatic
bioRxiv, 2 Dec 2023 DOI: 10.1101/2023.12.02.569691 Link to full text
Abstract: Optogenetics is a powerful tool for spatiotemporal control of gene expression. Several light-inducible gene regulators have been developed to function in bacteria, and these regulatory circuits have been ported into new host strains. Here, we developed and adapted a red light-inducible transcription factor for Shewanella oneidensis. This regulatory circuit is based on the iLight optogenetic system, which controls gene expression using red light. Promoter engineering and a thermodynamic model were used to adapt this system to achieve differential gene expression in light and dark conditions within a S. oneidensis host strain. We further improved the iLight optogenetic system by adding a repressor to invert the genetic circuit and activate gene expression under red light illumination. The inverted iLight genetic circuit was used to control extracellular electron transfer (EET) within S. oneidensis. The ability to use both red and blue light-induced optogenetic circuits simultaneously was demonstrated. Our work expands the synthetic biology toolbox of Shewanella, which could facilitate future advances in applications with electrogenic bacteria.
3.

Light-Induced Patterning of Electroactive Bacterial Biofilms.

blue YtvA S. oneidensis
ACS Synth Biol, 22 Jun 2022 DOI: 10.1021/acssynbio.2c00024 Link to full text
Abstract: Electroactive bacterial biofilms can function as living biomaterials that merge the functionality of living cells with electronic components. However, the development of such advanced living electronics has been challenged by the inability to control the geometry of electroactive biofilms relative to solid-state electrodes. Here, we developed a lithographic strategy to pattern conductive biofilms of Shewanella oneidensis by controlling aggregation protein CdrAB expression with a blue light-induced genetic circuit. This controlled deposition enabled S. oneidensis biofilm patterning on transparent electrode surfaces, and electrochemical measurements allowed us to both demonstrate tunable conduction dependent on pattern size and quantify the intrinsic conductivity of the living biofilms. The intrinsic biofilm conductivity measurements enabled us to experimentally confirm predictions based on simulations of a recently proposed collision-exchange electron transport mechanism. Overall, we developed a facile technique for controlling electroactive biofilm formation on electrodes, with implications for both studying and harnessing bioelectronics.
Submit a new publication to our database