Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 3 of 3 results
1.

Propagating Wave of ERK Activation Orients Collective Cell Migration.

blue CRY2/CIB1 MDCK Control of cytoskeleton / cell motility / cell shape
Dev Cell, 6 Nov 2017 DOI: 10.1016/j.devcel.2017.10.016 Link to full text
Abstract: The biophysical framework of collective cell migration has been extensively investigated in recent years; however, it remains elusive how chemical inputs from neighboring cells are integrated to coordinate the collective movement. Here, we provide evidence that propagation waves of extracellular signal-related kinase (ERK) mitogen-activated protein kinase activation determine the direction of the collective cell migration. A wound-healing assay of Mardin-Darby canine kidney (MDCK) epithelial cells revealed two distinct types of ERK activation wave, a "tidal wave" from the wound, and a self-organized "spontaneous wave" in regions distant from the wound. In both cases, MDCK cells collectively migrated against the direction of the ERK activation wave. The inhibition of ERK activation propagation suppressed collective cell migration. An ERK activation wave spatiotemporally controlled actomyosin contraction and cell density. Furthermore, an optogenetic ERK activation wave reproduced the collective cell migration. These data provide new mechanistic insight into how cells sense the direction of collective cell migration.
2.

Efficient synthesis of phycocyanobilin in mammalian cells for optogenetic control of cell signaling.

red PhyB/PIF3 PhyB/PIF6 HEK293T HeLa mESCs Signaling cascade control
Proc Natl Acad Sci USA, 24 Oct 2017 DOI: 10.1073/pnas.1707190114 Link to full text
Abstract: Optogenetics is a powerful tool to precisely manipulate cell signaling in space and time. For example, protein activity can be regulated by several light-induced dimerization (LID) systems. Among them, the phytochrome B (PhyB)-phytochrome-interacting factor (PIF) system is the only available LID system controlled by red and far-red lights. However, the PhyB-PIF system requires phycocyanobilin (PCB) or phytochromobilin as a chromophore, which must be artificially added to mammalian cells. Here, we report an expression vector that coexpresses HO1 and PcyA with Ferredoxin and Ferredoxin-NADP+ reductase for the efficient synthesis of PCB in the mitochondria of mammalian cells. An even higher intracellular PCB concentration was achieved by the depletion of biliverdin reductase A, which degrades PCB. The PCB synthesis and PhyB-PIF systems allowed us to optogenetically regulate intracellular signaling without any external supply of chromophores. Thus, we have provided a practical method for developing a fully genetically encoded PhyB-PIF system, which paves the way for its application to a living animal.
3.

Stochastic ERK activation induced by noise and cell-to-cell propagation regulates cell density-dependent proliferation.

blue CRY2/CIB1 NRK-52E Signaling cascade control Cell cycle control
Mol Cell, 17 Oct 2013 DOI: 10.1016/j.molcel.2013.09.015 Link to full text
Abstract: The extracellular signal-regulated kinase (ERK) plays a central role in the signaling cascades of cell growth. Here, we show that stochastic ERK activity pulses regulate cell proliferation rates in a cell density-dependent manner. A fluorescence resonance energy transfer (FRET) biosensor revealed that stochastic ERK activity pulses fired spontaneously or propagated from adjacent cells. Frequency, but not amplitude, of ERK activity pulses exhibited a bell-shaped response to the cell density and correlated with cell proliferation rates. Consistently, synthetic ERK activity pulses generated by a light-switchable CRaf protein accelerated cell proliferation. A mathematical model clarified that 80% and 20% of ERK activity pulses are generated by the noise and cell-to-cell propagation, respectively. Finally, RNA sequencing analysis of cells subjected to the synthetic ERK activity pulses suggested the involvement of serum responsive factor (SRF) transcription factors in the gene expression driven by the ERK activity pulses.
Submit a new publication to our database