Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results

Optogenetic relaxation of actomyosin contractility uncovers mechanistic roles of cortical tension during cytokinesis.

blue CRY2/CIB1 iLID MDCK Control of cytoskeleton / cell motility / cell shape
bioRxiv, 20 Apr 2021 DOI: 10.1101/2021.04.19.440549 Link to full text
Abstract: Actomyosin contractility generated cooperatively by nonmuscle myosin II and actin filaments plays essential roles in a wide range of biological processes, such as cell motility, cytokinesis, and tissue morphogenesis. However, it is still unknown how actomyosin contractility generates force and maintains cellular morphology. Here, we demonstrate an optogenetic method to induce relaxation of actomyosin contractility. The system, named OptoMYPT, combines a catalytic subunit of the type I phosphatase-binding domain of MYPT1 with an optogenetic dimerizer, so that it allows light-dependent recruitment of endogenous PP1c to the plasma membrane. Blue-light illumination was sufficient to induce dephosphorylation of myosin regulatory light chains and decrease in traction force at the subcellular level. The OptoMYPT system was further employed to understand the mechanics of actomyosin-based cortical tension and contractile ring tension during cytokinesis. We found that the relaxation of cortical tension at both poles by OptoMYPT accelerated the furrow ingression rate, revealing that the cortical tension substantially antagonizes constriction of the cleavage furrow. Based on these results, the OptoMYPT system will provide new opportunities to understand cellular and tissue mechanics.

Improvement of Phycocyanobilin Synthesis for Genetically Encoded Phytochrome-Based Optogenetics.

red PhyB/PIF3 HeLa mESCs Xenopus in vivo
ACS Chem Biol, 9 Nov 2020 DOI: 10.1021/acschembio.0c00477 Link to full text
Abstract: Optogenetics is a powerful technique using photoresponsive proteins, and the light-inducible dimerization (LID) system, an optogenetic tool, allows to manipulate intracellular signaling pathways. One of the red/far-red responsive LID systems, phytochrome B (PhyB)-phytochrome interacting factor (PIF), has a unique property of controlling both association and dissociation by light on the second time scale, but PhyB requires a linear tetrapyrrole chromophore such as phycocyanobilin (PCB), and such chromophores are present only in higher plants and cyanobacteria. Here, we report that we further improved our previously developed PCB synthesis system (SynPCB) and successfully established a stable cell line containing a genetically encoded PhyB-PIF LID system. First, four genes responsible for PCB synthesis, namely, PcyA, HO1, Fd, and Fnr, were replaced with their counterparts derived from thermophilic cyanobacteria. Second, Fnr was truncated, followed by fusion with Fd to generate a chimeric protein, tFnr-Fd. Third, these genes were concatenated with P2A peptide cDNAs for polycistronic expression, resulting in an approximately 4-fold increase in PCB synthesis compared with the previous version. Finally, we incorporated the PhyB, PIF, and SynPCB system into drug inducible lentiviral and transposon vectors, which enabled us to induce PCB synthesis and the PhyB-PIF LID system by doxycycline treatment. These tools provide a new opportunity to advance our understanding of the causal relationship between intracellular signaling and cellular functions.
Submit a new publication to our database