Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results

Spatiotemporal control of fibroblast growth factor receptor signals by blue light.

blue CRY2/CRY2 HeLa HUVEC Signaling cascade control Control of cytoskeleton / cell motility / cell shape
Chem Biol, 26 Jun 2014 DOI: 10.1016/j.chembiol.2014.05.013 Link to full text
Abstract: Fibroblast growth factor receptors (FGFRs) regulate diverse cellular behaviors that should be exquisitely controlled in space and time. We engineered an optically controlled FGFR (optoFGFR1) by exploiting cryptochrome 2, which homointeracts upon blue light irradiation. OptoFGFR1 can rapidly and reversibly control intracellular FGFR1 signaling within seconds by illumination with blue light. At the subcellular level, localized activation of optoFGFR1 induced cytoskeletal reorganization. Utilizing the high spatiotemporal precision of optoFGFR1, we efficiently controlled cell polarity and induced directed cell migration. OptoFGFR1 provides an effective means to precisely control FGFR signaling and is an important optogenetic tool that can be used to study diverse biological processes both in vitro and in vivo.

Light-inducible receptor tyrosine kinases that regulate neurotrophin signalling.

blue CRY2/CIB1 CRY2/CRY2 HeLa PC-12 rat hippocampal neurons Signaling cascade control Control of cytoskeleton / cell motility / cell shape Cell differentiation
Nat Commun, 4 Jun 2014 DOI: 10.1038/ncomms5057 Link to full text
Abstract: Receptor tyrosine kinases (RTKs) are a family of cell-surface receptors that have a key role in regulating critical cellular processes. Here, to understand and precisely control RTK signalling, we report the development of a genetically encoded, photoactivatable Trk (tropomyosin-related kinase) family of RTKs using a light-responsive module based on Arabidopsis thaliana cryptochrome 2. Blue-light stimulation (488 nm) of mammalian cells harbouring these receptors robustly upregulates canonical Trk signalling. A single light stimulus triggers transient signalling activation, which is reversibly tuned by repetitive delivery of blue-light pulses. In addition, the light-provoked process is induced in a spatially restricted and cell-specific manner. A prolonged patterned illumination causes sustained activation of extracellular signal-regulated kinase and promotes neurite outgrowth in a neuronal cell line, and induces filopodia formation in rat hippocampal neurons. These light-controllable receptors are expected to create experimental opportunities to spatiotemporally manipulate many biological processes both in vitro and in vivo.
Submit a new publication to our database