Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 5 of 5 results
1.

Robustness of epithelial sealing is an emerging property of local ERK feedback driven by cell elimination.

blue CRY2/CRY2 D. melanogaster in vivo Signaling cascade control Cell death
Dev Cell, 28 May 2021 DOI: 10.1016/j.devcel.2021.05.006 Link to full text
Abstract: What regulates the spatiotemporal distribution of cell elimination in tissues remains largely unknown. This is particularly relevant for epithelia with high rates of cell elimination where simultaneous death of neighboring cells could impair epithelial sealing. Here, using the Drosophila pupal notum (a single-layer epithelium) and a new optogenetic tool to trigger caspase activation and cell extrusion, we first showed that death of clusters of at least three cells impaired epithelial sealing; yet, such clusters were almost never observed in vivo. Accordingly, statistical analysis and simulations of cell death distribution highlighted a transient and local protective phase occurring near every cell death. This protection is driven by a transient activation of ERK in cells neighboring extruding cells, which inhibits caspase activation and prevents elimination of cells in clusters. This suggests that the robustness of epithelia with high rates of cell elimination is an emerging property of local ERK feedback.
2.

Control of Cell Migration Using Optogenetics.

blue CRY2/CIB1 HeLa
Methods Mol Biol, 17 Sep 2020 DOI: 10.1007/978-1-0716-0779-4_29 Link to full text
Abstract: Optogenetics uses light to manipulate protein localization or activity from subcellular to supra-cellular level with unprecedented spatiotemporal resolution. We used it to control the activity of the Cdc42 Rho GTPase, a major regulator of actin polymerization and cell polarity. In this chapter, we describe how to trigger and guide cell migration using optogenetics as a way to mimic EMT in an artificial yet highly controllable fashion.
3.

Robustness of epithelial sealing is an emerging property of local ERK feedbacks driven by cell elimination.

blue CRY2/CRY2 D. melanogaster in vivo Cell death
bioRxiv, 18 Mar 2020 DOI: 10.1101/2020.03.17.994921 Link to full text
Abstract: While the pathways regulating apoptosis and cell extrusion are rather well described1,2, what regulates the precise spatio-temporal distribution of cell elimination in tissues remains largely unknown. This is particularly relevant for epithelia with high rates of cell elimination, a widespread situation during embryogenesis3-6 and homeostasis7, where concomitant death of neigbours could impair the maintenance of epithelial sealing. However, the extent to which epithelial tissues can cope with concomitant cell death, and whether any mechanism regulates such occurrence have never been explored so far. Here, using the Drosophila pupal notum (a single layer epithelium) and a new optogenetic tool to trigger caspase activation and cell extrusion, we first show that concomitant death of clusters of at least three cells is sufficient to transiently impair epithelial sealing. Such clustered extrusion was almost never observed in vivo, suggesting the existence of a mechanism preventing concomitant elimination of neighbours. Statistical analysis of cell death distribution in the notum highlighted a transient and local protective phase occurring near every dying cell. This protection is driven by a transient activation of ERK in the direct neighbours of extruding cells which reverts caspase activation and prevents elimination of cells in clusters. Altogether, this study demonstrates that the distribution of cell elimination in epithelia is an emerging property of transient and local feedbacks through ERK activation which is required to maintain epithelial sealing in conditions of high rate of cell elimination.
4.

Optogenetic control of cellular forces and mechanotransduction.

blue CRY2/CIB1 MDCK Control of cytoskeleton / cell motility / cell shape
Nat Commun, 10 Feb 2017 DOI: 10.1038/ncomms14396 Link to full text
Abstract: Contractile forces are the end effectors of cell migration, division, morphogenesis, wound healing and cancer invasion. Here we report optogenetic tools to upregulate and downregulate such forces with high spatiotemporal accuracy. The technology relies on controlling the subcellular activation of RhoA using the CRY2/CIBN light-gated dimerizer system. We fused the catalytic domain (DHPH domain) of the RhoA activator ARHGEF11 to CRY2-mCherry (optoGEF-RhoA) and engineered its binding partner CIBN to bind either to the plasma membrane or to the mitochondrial membrane. Translocation of optoGEF-RhoA to the plasma membrane causes a rapid and local increase in cellular traction, intercellular tension and tissue compaction. By contrast, translocation of optoGEF-RhoA to mitochondria results in opposite changes in these physical properties. Cellular changes in contractility are paralleled by modifications in the nuclear localization of the transcriptional regulator YAP, thus showing the ability of our approach to control mechanotransductory signalling pathways in time and space.
5.

Predictive Spatiotemporal Manipulation of Signaling Perturbations Using Optogenetics.

blue CRY2/CIB1 HeLa NIH/3T3 Control of cytoskeleton / cell motility / cell shape
Biophys J, 3 Nov 2015 DOI: 10.1016/j.bpj.2015.08.042 Link to full text
Abstract: Recently developed optogenetic methods promise to revolutionize cell biology by allowing signaling perturbations to be controlled in space and time with light. However, a quantitative analysis of the relationship between a custom-defined illumination pattern and the resulting signaling perturbation is lacking. Here, we characterize the biophysical processes governing the localized recruitment of the Cryptochrome CRY2 to its membrane-anchored CIBN partner. We develop a quantitative framework and present simple procedures that enable predictive manipulation of protein distributions on the plasma membrane with a spatial resolution of 5 μm. We show that protein gradients of desired levels can be established in a few tens of seconds and then steadily maintained. These protein gradients can be entirely relocalized in a few minutes. We apply our approach to the control of the Cdc42 Rho GTPase activity. By inducing strong localized signaling perturbation, we are able to monitor the initiation of cell polarity and migration with a remarkable reproducibility despite cell-to-cell variability.
Submit a new publication to our database