Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 7 of 7 results

High-throughput multicolor optogenetics in microwell plates.

blue red iLID PhyB/PIF6 HEK293T NIH/3T3 Signaling cascade control Multichromatic
Nat Protoc, 24 Jun 2019 DOI: 10.1038/s41596-019-0178-y Link to full text
Abstract: Optogenetic probes can be powerful tools for dissecting complexity in cell biology, but there is a lack of instrumentation to exploit their potential for automated, high-information-content experiments. This protocol describes the construction and use of the optoPlate-96, a platform for high-throughput three-color optogenetics experiments that allows simultaneous manipulation of common red- and blue-light-sensitive optogenetic probes. The optoPlate-96 enables illumination of individual wells in 96-well microwell plates or in groups of wells in 384-well plates. Its design ensures that there will be no cross-illumination between microwells in 96-well plates, and an active cooling system minimizes sample heating during light-intensive experiments. This protocol details the steps to assemble, test, and use the optoPlate-96. The device can be fully assembled without specialized equipment beyond a 3D printer and a laser cutter, starting from open-source design files and commercially available components. We then describe how to perform a typical optogenetics experiment using the optoPlate-96 to stimulate adherent mammalian cells. Although optoPlate-96 experiments are compatible with any plate-based readout, we describe analysis using quantitative single-cell immunofluorescence. This workflow thus allows complex optogenetics experiments (independent control of stimulation colors, intensity, dynamics, and time points) with high-dimensional outputs at single-cell resolution. Starting from 3D-printed and laser-cut components, assembly and testing of the optoPlate-96 can be accomplished in 3-4 h, at a cost of ~$600. A full optoPlate-96 experiment with immunofluorescence analysis can be performed within ~24 h, but this estimate is variable depending on the cell type and experimental parameters.

Optogenetic control reveals differential promoter interpretation of transcription factor nuclear translocation dynamics.

blue LOVTRAP S. cerevisiae
bioRxiv, 15 Feb 2019 DOI: 10.1101/548255 Link to full text
Abstract: The dynamic translocation of transcription factors (TFs) in and out of the nucleus is thought to encode information, such as the identity of a stimulus. A corollary is the idea that gene promoters can decode different dynamic TF translocation patterns. Testing this TF encoding/promoter decoding hypothesis requires tools that allow direct control of TF dynamics without the pleiotropic effects associated with general perturbations. In this work, we present CLASP (Controllable Light Activated Shuttling and Plasma membrane sequestration), a tool that enables precise, modular, and reversible control of TF localization using a combination of two optimized LOV2 optogenetic constructs. The first sequesters the cargo in the dark at the plasma membrane and releases it upon exposure to blue light, while light exposure of the second reveals a nuclear localization sequence that shuttles the released cargo to the nucleus. CLASP achieves minute-level resolution, reversible translocation of many TF cargos, large dynamic range, and tunable target gene expression. Using CLASP, we investigate the relationship between Crz1, a naturally pulsatile TF, and its cognate promoters. We establish that some Crz1 target genes respond more efficiently to pulsatile TF inputs than to continuous inputs, while others exhibit the opposite behavior. We show using computational modeling that efficient gene expression in response to short pulsing requires fast promoter activation and slow inactivation and that the opposite phenotype can ensue from a multi-stage promoter activation, where a transition in the first stage is thresholded. These data directly demonstrate differential interpretation of TF pulsing dynamics by different genes, and provide plausible models that can achieve these phenotypes.

Cancer mutations and targeted drugs can disrupt dynamic signal encoding by the Ras-Erk pathway.

red PhyB/PIF6 16HBE14o- BEAS-2B HCC827 II-18 NCI-H1395 NCI-H441 NIH/3T3 Signaling cascade control Cell cycle control
Science, 31 Aug 2018 DOI: 10.1126/science.aao3048 Link to full text
Abstract: The Ras-Erk (extracellular signal-regulated kinase) pathway encodes information in its dynamics; the duration and frequency of Erk activity can specify distinct cell fates. To enable dynamic encoding, temporal information must be accurately transmitted from the plasma membrane to the nucleus. We used optogenetic profiling to show that both oncogenic B-Raf mutations and B-Raf inhibitors can cause corruption of this transmission, so that short pulses of input Ras activity are distorted into abnormally long Erk outputs. These changes can reshape downstream transcription and cell fates, resulting in improper decisions to proliferate. These findings illustrate how altered dynamic signal transmission properties, and not just constitutively increased signaling, can contribute to cell proliferation and perhaps cancer, and how optogenetic profiling can dissect mechanisms of signaling dysfunction in disease.

Modular engineering of cellular signaling proteins and networks.

blue cyan red UV Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Curr Opin Struct Biol, 15 Jul 2016 DOI: 10.1016/ Link to full text
Abstract: Living cells respond to their environment using networks of signaling molecules that act as sensors, information processors, and actuators. These signaling systems are highly modular at both the molecular and network scales, and much evidence suggests that evolution has harnessed this modularity to rewire and generate new physiological behaviors. Conversely, we are now finding that, following nature's example, signaling modules can be recombined to form synthetic tools for monitoring, interrogating, and controlling the behavior of cells. Here we highlight recent progress in the modular design of synthetic receptors, optogenetic switches, and phospho-regulated proteins and circuits, and discuss the expanding role of combinatorial design in the engineering of cellular signaling proteins and networks.

Regulation of endogenous transmembrane receptors through optogenetic Cry2 clustering.

blue CRY2/CRY2 HEK293T NIH/3T3 rat hippocampal NSCs Signaling cascade control Control of cytoskeleton / cell motility / cell shape
Nat Commun, 22 Apr 2015 DOI: 10.1038/ncomms7898 Link to full text
Abstract: Transmembrane receptors are the predominant conduit through which cells sense and transduce extracellular information into intracellular biochemical signals. Current methods to control and study receptor function, however, suffer from poor resolution in space and time and often employ receptor overexpression, which can introduce experimental artefacts. We report a genetically encoded approach, termed Clustering Indirectly using Cryptochrome 2 (CLICR), for spatiotemporal control over endogenous transmembrane receptor activation, enabled through the optical regulation of target receptor clustering and downstream signalling using noncovalent interactions with engineered Arabidopsis Cryptochrome 2 (Cry2). CLICR offers a modular platform to enable photocontrol of the clustering of diverse transmembrane receptors including fibroblast growth factor receptor (FGFR), platelet-derived growth factor receptor (PDGFR) and integrins in multiple cell types including neural stem cells. Furthermore, light-inducible manipulation of endogenous receptor tyrosine kinase (RTK) activity can modulate cell polarity and establish phototaxis in fibroblasts. The resulting spatiotemporal control over cellular signalling represents a powerful new optogenetic framework for investigating and controlling cell function and fate.

Light-inducible activation of target mRNA translation in mammalian cells.

blue CRY2/CIB1 HEK293T
Chem Commun (Camb), 28 Sep 2013 DOI: 10.1039/c3cc44866e Link to full text
Abstract: A genetically encoded optogenetic system was constructed that activates mRNA translation in mammalian cells in response to light. Blue light induces the reconstitution of an RNA binding domain and a translation initiation domain, thereby activating target mRNA translation downstream of the binding sites.

Optogenetic protein clustering and signaling activation in mammalian cells.

blue CRY2/CRY2 HEK293T NIH/3T3 Signaling cascade control Control of cytoskeleton / cell motility / cell shape
Nat Methods, 3 Feb 2013 DOI: 10.1038/nmeth.2360 Link to full text
Abstract: We report an optogenetic method based on Arabidopsis thaliana cryptochrome 2 for rapid and reversible protein oligomerization in response to blue light. We demonstrated its utility by photoactivating the β-catenin pathway, achieving a transcriptional response higher than that obtained with the natural ligand Wnt3a. We also demonstrated the modularity of this approach by photoactivating RhoA with high spatiotemporal resolution, thereby suggesting a previously unknown mode of activation for this Rho GTPase.
Submit a new publication to our database